
16

Visual Program Manipulation in the Polyhedral Model

OLEKSANDR ZINENKO, Inria and University Paris-Saclay

STÉPHANE HUOT, Inria

CÉDRIC BASTOUL, University of Strasbourg and Inria

Parallelism is one of the key performance sources in modern computer systems. When heuristics-based

automatic parallelization fails to improve performance, a cumbersome and error-prone manual transformation

is o�en required. As a solution, we propose an interactive visual approach building on the polyhedral model

that visualizes exact dependences and parallelism; decomposes and replays a complex automatically-computed

transformation step by step; and allows for directly manipulating the visual representation as a means of

transforming the program with immediate feedback. User studies suggest that our visualization is understood

by experts and non-experts alike, and that it may favor an exploratory approach.

ACM Reference format:
Oleksandr Zinenko, Stéphane Huot, and Cédric Bastoul. 2018. Visual Program Manipulation in the Polyhedral

Model. ACM Transactions on Architecture and Code Optimization 15, 1, Article 16 (March 2018), 25 pages.

DOI: 10.1145/3177961

1 INTRODUCTION
Large-scale adoption of heterogeneous parallel architectures requires e�cient solutions to ex-

ploit the available parallelism from applications. Despite signi�cant e�ort in simplifying parallel

programming through new languages, high-level language extensions, frameworks and libraries,

manual parallelization may still be required although o�en ruled out as time consuming and error-

prone. �us, programmers mostly rely on automatic optimization tools, such as those based on

the polyhedral model, to improve program performance. �e polyhedral model [21] has been the

cornerstone of loop-level program transformation in the last two decades [3, 8, 20]. It features exact

iteration-wise dependence analysis and optimization for both parallelism and locality. However,

automatic polyhedral compilation is based on imprecise heuristics [8, 11]. Polyhedral compilers

give user some (limited) control over the optimization process, which requires understanding their

internal operation anyway. Furthermore, they are applicable globally and do not allow for �ner-

grain control, e.g., a�ecting only one loop nest. Visual interfaces for con�guring the polyhedral

compiler [39] partially mitigate these issues by making polyhedral compiler blocks discoverable,

but still require a deep understanding of internal operation of a compiler.

Semi-automatic approaches provide the user with a set of prede�ned program transformations,

typically exposed as compiler directives [22, 31, 56]. �ey shi� the expertise requirements from

heuristics to loop-level code transformations. �ey also require program transformation to be

performed from scratch (as polyhedrally-transformed code is barely readable) while o�ering li�le

support in identifying illegal or pro�table transformations. Recently, we proposed the Chlore
algorithm that identi�es a sequence of transformation directives equivalent to an automatically

Conference Extension: Visualization was presented at VL/HCC 2014 [58]; preliminary evaluation at IMPACT workshop in

2015 [57]. In this paper, we introduce (1) the mapping between graphical manipulations and program transformations; (2)

the animated replay of transformation sequences; (3) a study of visualization relevance compared to code.

© 2018 ACM. �is is the author’s version of the work. It is posted here for your personal use. Not for redistribution. �e

de�nitive Version of Record was published in ACM Transactions on Architecture and Code Optimization, h�p://dx.doi.org/10.

1145/3177961.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 16. Publication date: March 2018.

http://dx.doi.org/10.1145/3177961
http://dx.doi.org/10.1145/3177961


16:2 Oleksandr Zinenko, Stéphane Huot, and Cédric Bastoul

computed transformation, decoupled from a polyhedral compiler [2]. However, sequences of

directives are o�en long, and e�ects of individual transformations are unclear.

In this paper, we go further than transformation primitives by presenting an interactive visual

program transformation toolsuite, Clint. It is a result of interdisciplinary work between optimiza-

tion and human-computer interaction (HCI). We demonstrate how the geometrical nature of the

polyhedral model can be leveraged to design e�cient visualization and interactions.

Beyond static visualization, Clint features a step-by-step animated replay of Chlore-identi�ed

transformations with immediate feedback on their e�ects. It also allows the user to directly

manipulate [46] the visual representation to modify these sequences or to transform programs

manually while ensuring transformation legality and �nal code generation. Following a user-centric
approach, we conducted user studies to asses the visualization and interactions.

While visualization-based interactive program restructuring is applicable to di�erent program

representations, Clint relies on the polyhedral model in order to operate on individual loop iterations.

We extensively detail the design methodology and evaluation process so as to allow its application

to di�erent program manipulation tasks as well as replication of our studies.

2 PROGRAM TRANSFORMATION IN THE POLYHEDRAL MODEL
�e polyhedral model is an algebraic representation of “su�ciently regular” imperative programs

that encodes dynamic executions of statements inside loop nests [21]. It is used within several

production compilers such as GCC [41], LLVM [25] and IBM XL [10], as well as in research

compilers [37]. Programs parts that can be represented are loop-based kernels with static control

and a�ne memory accesses, referred to as SCoPs. �ey feature loop bounds, conditions and

array subscripts that are a�ne forms of outer loop counters and runtime constants referred to

as parameters. SCoPs cover a large range of compute-intensive mathematical programs where

loop-level optimization is critical [52]. Moreover, the model can be extended beyond SCoPs [7].

�e key aspect of the polyhedral model is to encode individual executions of each statement, called

statement instances. Geometrically, a�ne loop bounds de�ne a polyhedron in a multidimensional

space, hence the name of the model.

2.1 Workflow in the Polyhedral Model
Contrary to conventional optimizers, polyhedral tools do not operate on syntactic forms. Instead,

they transform or raise the code into a union of relations, then analyze and alter these relations,

and �nally generate the restructured code. �e following provides more detail on these steps.

2.1.1 Raising. Transforming a program into a polyhedral representation is a ma�er of de�ning

iteration domains of a statement and its access relations. Statement instances are identi�ed by a

vector of values of surrounding loop counters. An iteration domain of a statement is a set of all

such vectors. For the sake of notation generality, sets are considered as degenerate relations with

zero-dimensional input space. For example, the polynomial multiply kernel shown in Fig. 1a has

one statement S whose domain is wri�en in set-constructor notation as

DS(N ) = {(i, j)
T | 0 ≤ i < N ∧ 0 ≤ j < N }.

Access relations map statement instances to accessed array elements. Scalars are treated as

zero-dimensional arrays. Union of such relations allows for encoding access to di�erent arrays. For

statement S in the same example, this access union is

AS(N ) = {(i, j)
T → (arr,a1)

T | (arr = z∧a1 = i + j) ∪ (arr = x∧a1 = i) ∪ (arr = y∧a1 = j)}.

where arr corresponds to the name of accessed array and a1 corresponds to its only dimension.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 16. Publication date: March 2018.



Visual Program Manipulation in the Polyhedral Model 16:3

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

S: z[i+j] += x[i] * y[j];

(a) Original

#pragma omp parallel for private(t2)
for (t1 = 0; t1 <= 2*N-2; t1++)

for (t2 = max(0, t1-N+1); t2 <= min(t1, N-1); t2++)

S: z[t1] += x[t2] * y[t1-t2];

(b) Transformed and Parallelized

Fig. 1. Polynomial Multiply computation kernel.

2.1.2 Program Transformation and Schedules. Changing the relative execution order of statement

instances transforms the program. We can de�ne a scheduling relation to map iteration domain

points to logical execution dates. If these dates are multidimensional, statement instances are exe-

cuted following the lexicographical order of their dates. Scheduling relations are expressive enough

to encode a complex composition of program transformations including, e.g., loop interchange,

fusion, �ssion, skewing, tiling, index-set-spli�ing, etc. [22].

For example, loop tiling [30] for the polynomial multiply can be expressed by the schedule

θS(N ) = {(i, j)
T → (t1, t2, t3, t4)

T | (32t1 ≤ t3 ≤ 32t1+31) ∧ (32t2 ≤ t4 ≤ 32t2+31) ∧ t3 = i ∧ t4 = j},

where 32 is the tile size. Note that t3 and t4 are de�ned explicitly by equalities while t1 and t2 are

de�ned implicitly by bounding inequalities, which correspond to integer division.

Schedule relations can be constructed manually or using high-level frameworks [2, 22, 31].

Automatic optimizers directly construct a scheduling relation with certain properties, including

minimal reuse distances, tilability and inner/outer parallelism [8, 9]. However, they may fail to

improve performance when achieving di�erent properties requires contradictory transformations,

for example exploiting spatial locality may be detrimental for parallelism [45].

2.1.3 Encoding Lexical Order. �roughout this paper, we use the so called (2d + 1) structure

of scheduling relations. It introduces (d + 1) auxiliary dimensions to the scheduling relation [31]

to represent lexical order. �ey are referred to as β-dimensions [22], as opposed to α dimensions

that represent the execution order of the d loops. Zero-based contiguous constant values of βi
enforce the relative order between di�erent objects (loops or statements) at depth i . �ey express

code motion transformations such as loop fusion and �ssion. For example, the (2d + 1) form of the

identity scheduling relation for polynomial multiply is

θS(N ) = {(i, j)
T → (β1,α1, β2,α2, β3)

T | β1 = 0∧α1 = i ∧ β2 = 0∧α2 = j ∧ β3 = 0}.

Given that β-dimensions are constant, they can be concisely rewri�en as a vector
®β = (0, 0, 0)T .

β-vectors uniquely identify statements since no two statements can have the same lexical position.

Pre�xes of β-vectors (β-pre�xes) uniquely identify loops, with their length corresponding to the

nesting depth. Statements that share d loops, have identical β-pre�xes of length d .

2.1.4 Program Analysis and Parallelism. �ey key power of the polyhedral model is its ability to

compute exact instance-wise dependences [19]. Two statement instances are dependent if they

access the same array element and at least one of them writes to it. For a program transformation to

preserve original program semantics, it is su�cient that pairs of dependent instances are executed in

the same order as before the transformation [32]. A dependence relation maps statement instances

(dependence sources) to the instances that must be executed a�er them (dependence sinks). If a

transformation inverses the execution order of dependent instances or assigns them the same

logical execution time, the dependence becomes violated and the transformation is illegal. �e

polyhedral model provides means to verify the legality of a scheduling relation [4, 19, 43, 48].

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 16. Publication date: March 2018.



16:4 Oleksandr Zinenko, Stéphane Huot, and Cédric Bastoul

Groups of instances, including loops, that do not transitively depend on each other may be

executed in an arbitrary order, including in parallel. Loop-level parallelism is expressed by a�aching

a “parallel” mark to an α dimension, which requires code generator to issue a parallel loop.

2.1.5 Code Generation. A�er a scheduling relation is de�ned, code generation is a ma�er of

building a program that scans the iteration domain with respect to the schedule [1]. Modern

code generators rely on generalized change of basis that combines the iteration domain and the

scheduling relation and puts scheduling dimensions in the foremost positions before creating

loops from all dimensions. Several e�cient algorithms and tools exist for that purpose including

CLooG [3], CodeGen+ [13] and ppcg [26]. For example, given the schedule T ′S = {(i, j)
T → (t1, t2)T |

t1 = i + j ∧ t2 = j} that implements loop skewing for the polynomial multiply kernel and a parallel

mark for dimension t1, CLooG may generate the code in Fig. 1b.

2.2 Transformation Directives
Even though polyhedral and syntactic approaches can be combined in an automatic tool [45], the

polyhedral optimizer does not operate in syntactic terms and provides only li�le control over its

parameters through compiler �ags. Recently, Bagnères et.al. proposed the Clay transformation set

that expresses a large number of syntactic loop transformations as structured changes to scheduling

relations and rely on β-pre�xes to identify targets [2]. �ey also proposed the Chlore algorithm
that identi�es a sequence of Clay primitives that would transform any given scheduling relation

into another scheduling relation.

For example, the aforementioned loop skewing transformation is expressed as a dimension

substitution: Skew( ®ρ, i,k): ∀θS :
®βS,1.. dim ®ρ = ®ρ,αdim ®ρ 7→ α

dim ®ρ + k · αi . Any occurrence of the

output dimension α
dim ®ρ is replaced by a linear combination of itself with another output dimension

αi . �us, the schedule T ′S from the previous section is obtained from the identity schedule by

Skew((β1)
T = (0)T , i = 2,k = 1) where β1 identi�es the outer i loop. Loop Reshape is similar to

Skew except that it uses a linear combination of the input rather than output dimensions.

Transformations of the lexical order are encoded as modi�cations of β-vectors. For example,

fusing two subsequent loops is expressed as FuseNext( ®ρ): ∀θS :
®βS,1.. dim ®ρ−1

= ®ρ
1.. dim ®ρ−1

∧

®βS,dim ®ρ = ®ρdim ®ρ + 1, ®βS,1.. dim ®ρ−1
← ®ρS,1.. dim ®ρ , ®βS,dim ®ρ ←

®βS,dim ®ρ + maxT :
®βT = ®ρ

®βT ,dim ®ρ , where

dim ρ encodes fusion depth. �is transformations assigns equal β values up to given depth, which

corresponds to fusion, and updates the remaining ones to maintain uniqueness and contiguity.

Clay transformations are applicable to unions of scheduling relations such that the entire

union (but not necessarily individual relations) is le�-total and injective. Internally, Clay operates

on a matrix representation of systems of linear inequalities and supports arbitrarily complex

transformations as long as the properties of an union are preserved. Chlore algorithm builds on

matrix decompositions to identify sequences of Clay primitives that transform one set of matrices

into another set. More information and full speci�cation of transformations is available in [2].

Although Clay and Chlore enable interaction with a polyhedral engine using syntactic terms,

they face several challenges in application. (1) Target selection—β-pre�xes are required for each

transformation, yet they are not easily accessible in the source code. (2) Target consistency—the

generated code may have a di�erent structure than the original code, for example due to loop

separation [3], resulting in a mismatch between β-vectors and loop nesting. (3) E�ect separation—

even if Chlore produces a sequence of primitive transformations, it is di�cult to evaluate (potentially

negative) e�ects of individual transformation by reading the polyhedrally transformed code.

We address these challenges with Clint, a new interactive tool based on a graphical representation

of SCoPs which: simpli�es target selection to directly choosing a visualization of a transformation

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 16. Publication date: March 2018.



Visual Program Manipulation in the Polyhedral Model 16:5

target; maintains target consistency by matching the visualization to the original (o�en simpler)

code; and replays primitive “steps” of transformation to separate their e�ects, supporting further

interactive modi�cation.

3 DIRECTLY MANIPULATING POLYHEDRAL VISUALIZATIONS
To reduce the burden of code editing and transformation primitive application, we propose Clint,
an interactive loop-level transformation assistant based on the polyhedral model. It leverages the

geometric nature of the model by presenting SCoPs in a directly manipulable [46] visualization that

combines sca�er plots of iteration domains and node-link diagrams of instance-wise dependences.

�is approach is similar to the one commonly used in the polyhedral compilation community

to illustrate iteration domains. Clint goes beyond these static views by allowing program trans-

formation to be initiated directly from the visualization, and provides an animation-based visual

explanation of an automatically computed program transformation. Animated transitions corre-

spond to program transformations that, when applied, would change the program to obtain the

�nal visualization. �e user can replicate the action by directly manipulating the visualization

similarly to the transition or in a more elaborate way. �e set of interactive manipulations builds

on the geometry-related vocabulary of classical loop transformations, such as skewing or shi�ing,

which is expected to give the user supplementary intuition on the transformation e�ects and to

support exploration and learning.

�e design ofClint is motivated by the need for (1) a single and consistent visual interface to bridge

the gap between dependence analysis and subsequent program transformation; (2) an e�cient way

to explore multiple alternative loop transformations without rewriting the code; (3) explaining the

code modi�cations yielded by an automatic optimization. Although built around the complete Clay
transformation set [2], it can be extended to support di�erent transformations as long as e�ects

of any transformation can be undone by (a sequence of) other transformations. Clint seamlessly

combines loop transformations to support reasoning about execution order and dependences rather

than loop bounds and branch conditions. �e interactive visual approach reduces parallelism

extraction to visual pa�ern recognition [50] and code transformation to geometrical manipulations,

giving even non-expert programmers a way to manage the complexity of the underlying model [38].

Finally, it brings insight into the code-level e�ects of the polyhedral optimization by decomposing

a complex program transformation into primitive steps and providing a step-by-step visual replay,

independent of how an automatic optimizer operates internally.

3.1 Structure of the Visualization
Clint visualizes scheduled iteration domains, e.g., statement instances mapped by the scheduling

relation to the new coordinates in logical time space, see Fig. 2, for an example of a simple code

and its corresponding visualization. �e main graphical elements are as follows.

Points and Polygons. Our visualization consists of polygons containing points on the integer la�ice.

Each point represents a statement instance, positioned using values of α dimensions. Points are

linked together by arrows that depict instance-wise data �ow between them. �e polygon delimits

the loop bounds in the iteration space and is computed as a convex hull of the points it includes. �e

space itself is displayed as a coordinate system where axes correspond to loop iteration variables.

Color Coding. Statements are color coded to ensure matching between code and visual represen-

tations. A transformation, such as peeling or index-set-spli�ing, may result in sets of instances

of the same statement being executed in di�erent loop nests. We refer to this case as multiple

occurrences of the statement. Di�erent occurrences of the statement share the same color coding.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 16. Publication date: March 2018.



16:6 Oleksandr Zinenko, Stéphane Huot, and Cédric Bastoul

0 1 2 3 i

0

1

2

3

j

0 1 2 3 4 5 6 i

0

1

2

3

j

for (i = 0; i < N; ++i)
  for (j = 0; j < N; ++j)
   z[i+j] += x[i] * y[j];

for (i = 0; i < 2*N-1; ++i)
  for (j = max(0,i-N-1);
     j < min(i+1,N); ++j)
   z[i] += x[i-j] * y[j];

Fig. 2. Performing a skew transformation to parallelize polynomial multiplication loop by deforming the

polygon. The code is automatically transformed from its original form (le�) to the skewed one (right).

Coordinate Systems. Each coordinate system is at most two-dimensional. �e horizontal axis

represents the outer loop, and the vertical axis represents the inner loop. Statement occurrences

enclosed in both loops are displayed in the same coordinate system, with optional slight displace-

ment to discern them (see Fig. 4). Statement occurrences that share only the outer loop are placed

into di�erent coordinate systems, vertically aligned so that they visually share the horizontal axis.

We refer to this structure as pile (see Fig. 8b). Finally, statement occurrences not sharing loops are

displayed as a sequence of piles (see Fig. 8a), arranged to follow the lexical order.

We use β-vectors internally to arrange polygons and coordinate systems. Statements with

identical β-pre�xes of length d share a coordinate system if d is the depth of the inner loop, and a

pile if d is the depth of the outer loop. Consequently, coordinate systems and piles are uniquely

identi�ed by a β-pre�x.

Execution Order. Statement instances are executed bo�om to top, then le� to right, crossing

the bounds of coordinate systems in both cases. Multiple instances sharing a loop iteration are

executed in the order of increasing displacement. Arrows point at the instance executed second.

Tiling. Tiled domains are displayed as polygons with wide lines inside to delimit tile shapes.

All dimensions that are implicitly de�ned (see Section 2.1.2) are considered as tile loops and serve

to build the tile shapes creating sca�erplots with nested axes [28]. Tiling makes execution order

two-level: entire tiles are executed following the previously described order; instances inside each

tile are executed bo�om to top, then le� to right without crossing tile boundaries.

Multiple Projections. �e overall visualization is a set of two-dimensional projections, where

loops that are not matched to the axes are ignored. As the goal of Clint is program transformation,

we only display projections on the schedule α-dimensions, which coincide with iteration domain

dimensions before transformation. For a single statement occurrence, they may be ordered in a

sca�erplot matrix as in Fig. 5a. �e points are displayed with di�erent intensity of shade depending

on how many multidimensional instances were projected on this point. We motivate the choice of

2D projections vs 3D visualization by easier direct manipulation with a standard 2D input device

(e.g., mouse) [5, 14] and consistency of the visualization for even higher dimensionality.

Dependences and Parallelism. Dependences between points in the same coordinate system are

shown as arrows pointing from source to sink. By default, only direct (i.e., non transitively-covered)

dependences are shown. When hovering a point, all its dependences are visualized. Dependences

between vertically or horizontally adjacent coordinate systems are aggregated into large dots

(Fig. 7b). Finally, dependences between points in distant coordinate systems are only visualized

when either their source or sink is being manipulated to avoid visual clu�ering. Arrows and dots

turn red if the dependence is violated. Transformation legality check is performed parametrically. If

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 16. Publication date: March 2018.



Visual Program Manipulation in the Polyhedral Model 16:7

legality violation exists for values of parameters other than currently selected, the polygon contour

turns red instead of arrows.

Generally, parallel dependence arrows imply some parallelism is present in the loops – e.g., if

they are orthogonal to an axis, the loop corresponding to an axis features DoAll parallelism. Clint
highlights “parallel” axes in green to simplify parallelism identi�cation (see Fig. 2).

Parametric Domains. Domains whose bounds involve parametric expressions are visualized for a

�xed value of the parameters. By default, all parameters are assigned identical values computed

as follows. Clint computes the dependence distance sets from dependence relations by subtracting

the relation’s range from its domain. It then takes the maximum non-parametric absolute value

across all dimensions. Finally, it takes a minimum of this value and a prede�ned constant. We

selected this constant as 6 from our preliminary studies, observing that it is su�cient to represent

the majority of dependence pa�erns in our test suite. �e user can dynamically modify values of

individual parameters and the visualization will be automatically updated.

3.2 Directly Manipulable Visual Objects
Since program transformations in the polyhedral model correspond to changes of the statement

instance order, they can be performed on the visual representation of that order. In Clint, the

execution dates are mapped to point positions. �erefore, moving points corresponds to program

transformations. Visual marks such as points and polygons a�ord direct manipulation, i.e., they

can be dragged and dropped directly to the desired position.

Because many of the visual elements are mapped from the underlying SCoP properties, manip-

ulation should be structured so as to maintain those properties. For example, point coordinates

should remain integer to properly map to counted for loops. Furthermore, the polyhedral model

represents parametric iteration domains—having constant yet unknown sizes—making it technically

impossible to schedule each instance separately. �erefore, we only enable structured point manip-

ulation that can be mapped to similarly structured program transformations as expressed in, e.g.,

Clay framework. Visually, we use polygons and coordinate systems as manipulation substrates [34]

that mediate interaction with groups of points while ensuring structure preservation.

We refer to polygons and coordinate system as point containers. �ey can be seen as persistent
selection of the points manipulable together and sharing a common property: representing instances

of the same statement or being enclosed in the same loops. Polygons and coordinate systems also

allow to reify the conventional target selection and make it a �rst-class interactive object [6]. �e

user no longer needs an explicit (and sometimes cumbersome) selection step, by either clicking or

lassoing the objects with cursor, before starting the manipulation.

3.3 Mapping Interactions to Loop Transformations
As motivated above, we center the manipulation around polygons. We augment the polygon with

handles at its corners and borders, similarly to a conventional graphical editor. �ey appear when

the polygon is hovered and support many transformations without using any instruments or modes.

We rely on structured scheduling relation modi�cations of Clay framework, most of which

were inspired by well-known “classical” loop transformations [52]. Some of them map directly to

Clint visualization (e.g., Shift), while others do not (e.g., Interchange) or, even worse, can be

mapped in a misleading way (Skew). �erefore, instead of trying to map Clay transformations,

we rather follow an interaction-centered approach by mapping the possible graphical actions to

sequences of Clay transformations. Fig. 3 lists the graphical actions and the corresponding program

transformations. �e action parameters correspond to the a�ributes of the object being manipulated

or properties of the manipulation.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 16. Publication date: March 2018.



16:8 Oleksandr Zinenko, Stéphane Huot, and Cédric Bastoul

Action Parameters Transformations Before/A�er

Drag polygon

within CS

®β , x , y, dx , dy 1. Shift( ®β ,x ,dx)

2. Shift( ®β ,y,dy)

Drag polygon

between CS

®β , x , y, ®ρ 1. Reorder(β1..y , put last), βy ← maxS β
S
y − 1

2. Distribute(β1..y ), βy−1..y = (βy−1 + 1, 0)T

3. repeat 1,2 until dimension x
4. Reorder(β1..x , put a�er ρx ), βx ← ρx + 1

5. FuseNext(β1..x ), βx ..x+1 ← (βx−1,maxS β
S
x+1
+1)

6. repeat 4,5 until dimension y
7. Reorder(β1..y put last)

Drag corners

from center

®β , x , y, dx , dy,

sx , sy
1. Reshape( ®β ,y,x , bdx/syc)

2. Reshape( ®β ,x ,y, bdy/sxc)
use skew when possible

Drag corners

towards center

®β , x , dx , sx
(y axis used if

dy > dx )

1. Interchange( ®β ,x ,y) if bdx/sxc mod 2 = 1

2. Reverse(β1..x ) if 1 ≤ bdx/sxc mod 4 ≤ 2

3. Reverse(β1..y ) if bdx/sxc mod 4 ≥ 2

Drag border x , dx , sx 1. Densify( ®β)

2. Reverse( ®β) if dx < 0

3. Grain( ®β , bdx/sxc)

Click on rect-

angular selec-

tion of points

®β , x , y, tx , ty 1. Interchange(β1..y+2,y,y+1) ify implicitly de�ned
2. Linearize(β1..y+1) if y + 1 implicitly de�ned
3. Linearize(β1..x ) if x implicitly de�ned
4. StripMine(β1..x , tx)
5. StripMine(β1..y+1, ty)
6. Interchange(β1..y2

,y,y + 1)

Select points

and move

®β, ®ρ,
selection shape
{ fi (x ,y) ≥ 0}

1. ∀i, IndexSetSplit( ®β , fi ) if ®ρ = ∅
Collapse( ®ρ) otherwise.

Fig. 3. Mapping between interactive polygon manipulations and Clay transformations.
®β identifies the

statement occurrence corresponding to the polygon; ®ρ identifies the β-prefix of the coordinate system; x and

y are loop depths corresponding to the horizontal and vertical axes, respectively; dx and dy are cursor o�sets

from its position when the manipulation started; sx and sy are sizes of the polygon; tx and ty are sizes of the

selection. O�sets and sizes are expressed in coordinate system units, i.e., iterations.

For example, dragging a polygon along one of the axes directly corresponds to the Shift

transformation. However, dragging it to a di�erent coordinate system corresponds to a complex

sequence of Clay directives that perform code motion (see “Drag polygon between CS” in Fig. 3).

Transformations that result in an identical schedule are omi�ed, for example, no Reorder is applied

before Distribute if the statement occurrence is already the last in the loop.

Polymorphic Actions. �e coordinate system can be automatically extended to �t the polygon

being dragged. We leverage the equivalence property of transformation to stop automatic extension.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 16. Publication date: March 2018.



Visual Program Manipulation in the Polyhedral Model 16:9

Shi�ing past the largest bound does not change the relative execution order. In such cases, the

polygon goes outside the coordinate system, which is shrunk to �t only the remaining polygons.

Parametric Transformations. Transforming a parametrically-bounded domain may result in

parametric transformations. In particular, we look for a parametric bound closest to the mouse

cursor at the end of manipulation. For example, the amount of Shift is computed with respect to

the closest bound of the polygon other than the one being shi�ed. Alternatively, the conditions for

IndexSetSplit are (�rst) computed as a�ne expressions of the closest bound. If there is no such

expression, they are computed without using parameters.

Skew and Reshape. By default, the graphical action of skewing corresponds to the Reshape

transformation, and not the Skew transformation. �e la�er transforms the loop with respect

to the current expression for the other loop rather than to the original iterator. �is makes Skew

transformation combine badly: if the x loop is skewed by y to become (x +y), it becomes impossible

to skew y by x as it does not appear independently of y anymore. �e graphical intuition behind

loop skewing does not hold for combinations of skews. However, when a Reshape is identical to

Skew, Clint will perform a Skew since it is one of the well-known classical transformations
1
.

Targeting Individual Statements. Many Clay transformations operate on β-pre�xes, that is loops

rather than statements. We circumvent this by distributing away the target statement, applying the

desired transformation to a loop nest with only this statement, and then fusing everything back.

Manipulating Multiple Statements. If multiple polygons are selected within a coordinate system,

transformations are applied to all of them in inverse lexicographical order of their respective

β-vectors. Inversion prevents transformations from modifying β-vectors used to target subsequent

transformations. If a user manipulates a pile (or a coordinate system), the action is propagated to

all the polygons it contains, making the pile an implicit selector for the polygons it contains.

Manipulating Groups of Points. Individual points or groups thereof can be manipulated by turning

them into a polygon �rst. Selecting a group of points and dragging it away from existing polygon

separates it into two parts, mapping to the IndexSetSplit transformation. It creates a new

statement occurrence that can be manipulated separately. Dropping this polygon on top of another

polygon that represents a di�erent occurrence of the same statement is mapped to the Collapse

transformation. In cases of selections that are not adjacent to borders and/or not convex, multiple

IndexSetSplit transformations are performed. Each of the two resulting parts may correspond to

multiple occurrences of the statement, but is visualized and manipulated as a whole.

Cross-Projection Selections. When multiple projections are used, the selection of statement in-

stance points is combined from di�erent projections. �e overall multidimensional selection is an

intersection of constraints imposed by each separate two-dimensional selection. Empty selection

in a projection is thus equivalent to selecting everything.

Decoupling Visualization from Code. In Clint, we keep the visualization consistent with the

original program structure unless the user manually modi�es the code. �is allows for manipulating

multiple statement occurrences together, for example in case of shi�ing one statement with respect

to another inside the loop, which may result in loop separation as in Fig. 4.

1
In fact, we created Reshape transformation in Clay to address the skew combination problem. It was the last missing

transformation that enabled completeness of the set.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 16. Publication date: March 2018.



16:10 Oleksandr Zinenko, Stéphane Huot, and Cédric Bastoul

0 1 2 3 i

0

1

2

3

  j

0 1 2 3 4 i,i

0

1

2

3

j,j

for (i = 0; i < N; ++i)
  for (j = 0; j < N; ++j) {
   A[i+1][j+1] += 0.5 * A[i+1][j];
   B[i+1][j+1] += A[i][j];
 }

for (j = 0; j < N; ++j)

 B[1][j+1] += A[0][j];
#pragma omp parallel for private(j)
for (i = 0; i < N; ++i)
  for (j = 0; j < N; ++j) {
   A[i+1][j+1] += 0.5 * A[i+1][j];
   B[i+1][j+1] += A[i][j];
 }
for (j = 0; j < N; ++j)
A[N][j+1] += 0.5 * A[N][j];

Fig. 4. Manipulation for shift Transformation: the darker polygon is dragged right so that dependence arrows

become vertical without spanning between di�erent iterations on i. The visualization is then decoupled from

the code structure, and both statements can still be manipulated as if they were not split between two loops.

Transformation Legality Feed-Forward. Clint graphical interactions are structured so that it is

possible to identify the transformation before it is completed. For example, dragging a corner of

a polygon away from its center corresponds to a Reshape, the dragging direction and distance

de�ne transformation parameters. Since they are typically expressed in units of iteration steps

through division, we can use ceil instead of normal rounding to obtain the parameters earlier.

Hence Clint can perform a transformation before the end of corresponding user interaction. �is

allows to provide feed-forward about the transformation, i.e., its e�ects (in particular dependence

violation) are visualized during the interaction, guiding the user in their choice. In addition, this

approach allows Clint to hint the user about the state of the visualization if they �nish manipulation

immediately using a grayed-out preview shape (see Fig. 8).

3.4 Mapping Loop Transformations to Animated Transitions
Clint visualization enables the illustration of step-by-step execution of a Clay transformation script,

either constructed manually or translated from a compiler-computed schedule using Chlore [2].

Instead of providing a one-to-one mapping between individual transformations and animated

transitions, we take a generalized approach based on the structure of transformations. �ey can be

divided based on the scheduling relation dimensions they a�ect: (1) only α , (2) only β or (3) both α
and β . �e �rst group contains all transformations except FuseNext, Distribute and Reorder,

which belong to the second group, and StripMine, Linearize, IndexSetSplit and Collapse, which

belong to the third group. �is classi�cation allows us to limit the animation scope. Transformations

that do not modify β-dimensions may only a�ect points inside one container while points cannot

be moved between containers. Furthermore, only the projections on iterators involved in the

transformation should be updated. Transformations that only modify β-dimensions a�ect entire

containers without modifying the point positioning inside them.

Within-Container Transformations. Transformations of the �rst group are animated by simulta-

neously moving individual points to their new positions. During the transition, polygonal shapes

are updated to match the convex hull of the respective points. �us Shift transformation moves

all points simultaneously in one direction and corresponds to visual displacement, while Reshape

transformation moves rows (or columns) of points at di�erent lengths and results in shape skewing.

Multiple Projections. Several transformations operate on two dimensions, for example Reshape

and Interchange. For these cases, we consider the projection on both of these dimensions as the

main one, and the projections on one of the dimensions as auxiliary ones. In the main projection,

the one-to-one point transition remains applicable. On the other hand, in the auxiliary ones,

points may be created or deleted. For example, an auxiliary projection retains the rectangular

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 16. Publication date: March 2018.



Visual Program Manipulation in the Polyhedral Model 16:11

(a) Clint interface includes: (1) interactive visualization with multiple projec-

tions, (2) editable history view of transformations, and (3) source code editor;

all coordinated with each other.

(b) When main projection is

manipulated, auxiliary pro-

jections are updated simulta-

neously.

Fig. 5. Clint displays multiple projections for deep loop nests.

shape a�er a Reshape but becomes larger as some points are projected onto new coordinates (see

Fig. 5). Clint handles this by introducing a temporary third axis, orthogonal to the screen plane.

�is axis corresponds to the dimension present in the transformation, but not in the projection.

Points and arrows are then re-projected on three dimensions. Extra objects become visible only

during the animated transition and create a pseudo-3D e�ect. A�er the transition, the third axis

is deleted while the projected points remain in place (see Fig. 5b). �is technique is analogous to

Sca�erDice [18], but without axis switching.

Between-Container Transformations. As transformations of the second group a�ect entire poly-

gons only, we can translate them into motion of polygons. If all polygons of a container are moved,

the entire container is moved instead. Target containers are identi�ed using β-pre�xes.

Container Creation and Deletion. Transformations of the third group may result in containers

being created or deleted. However, without points, a polygon would correspond to statement

occurrence that has no instances and thus is never executed. �erefore, it must be impossible to

create empty containers. �e only way to create a container in Clint is by spli�ing an existing

container into multiple parts. �is exactly corresponds to the IndexSetSplit transformation if

the container is a polygon. It also maps to the Distribute transformation when the container is a

coordinate system or a pile. Conversely, Collapse and FuseNext transformations correspond to

visually joining two containers.

3.5 Clint Interface
Clint combines three editable and synchronized representations (see Fig. 5a): (1) the interactive

visualization; (2) a navigable and editable transformation history view based on Clay scripts; and

(3) the source code editor. A consistent color scheme is used between the views to match code

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 16. Publication date: March 2018.



16:12 Oleksandr Zinenko, Stéphane Huot, and Cédric Bastoul

statements to the visualization. Transformation directives corresponding to graphical actions are

immediately appended to the history view. �e user can then navigate through the history by

selecting an entry, which will update the visualization to the corresponding previous state, or

edit it directly using Clay syntax. As the target code tends to become complex and unreadable

a�er several manipulations, the user has the option to keep the original code visible instead of the

transformed one. Finally, when the code is edited, the visualization is updated, thus making Clint a

dynamic visualizer for polyhedral code.

4 USE SCENARIOS
Clint can be used as a stand-alone program transformation tool or in conjunction with an automatic

optimizer. In the �rst case, the user must decide on the transformation to perform. In the second case,

Clint proposes a sequence of primitive transformations equivalent to the automatically computed

one, le�ing the user complement or modify it independently from the optimizer. In both cases,

the user may reason in terms of an instance-wise dependence graph rather than in terms of loop

transformations or parameters of the optimization algorithm.

Our approach does not impose a particular transformation heuristic. Instead, we suggest to build

intuition by visualizing (optimized) programs that perform well and identifying visual pa�erns.
For an optimization expert, these pa�erns may eventually lead to a novel heuristic. We provide

two end-to-end illustrative examples, in which we a�empt to make dependence arrows short to

improve reuse and orthogonal to axes to exploit parallelism.

4.1 Assisted Semi-Automatic Transformation
Clint can be used as a tool for applying loop-level transformations that provides instant legality

feedback and generates transformed code automatically. Let us continue with the polynomial

multiplication kernel example, see Fig. 1a, to demonstrate how a long sequence of transformations

can be applied. Default representation of the kernel, with parameters set to 4, is shown in Fig. 6a.

�e loop j features parallelism and is marked accordingly. Inner parallelism is o�en less desirable

as it would incur barrier synchronization cost on every iteration of the outer loops. �erefore,

observing that dependence arrows are diagonal, the user may decide to make them orthogonal

to the i loop to make it parallel. �ey can do so by dragging the top right handle of the polygon

right, Fig. 6a. However, such transformation is illegal as indicated by the red arrows that point in

the direction opposite to the j access. �is dependence violation can be removed by switching the

direction of arrows, which is achieved by dragging the top right handle le� to rotate the polygon

around its center, Fig. 6b. �e combined transformation sequence is now legal yet potentially

ine�cient: di�erent iterations of parallel loop i execute di�erent numbers of statement instances.

Observing the symmetry of the polygon, the user selects a triangular-shaped group of points on

the right, Fig. 6c, and drags it to the empty space on the le�, Fig. 6d, until the balanced, rectangular

shape is reconstructed, Fig. 6e. �e �nal transformation corresponds to loop skewing, followed by

two loop reversals and shi�s, then by index-set spli�ing, and �nally by shi�ing. However, at no

time during transformation, the user must be aware of particular loop transformations, their legality

or the transformed code. �ey can operate on an instantiation of the instance-wise dependence

graph as opposed to directive-based approaches where, even with visualization, they would have

to �nd the transformation directive that would result in a desired visual shape.

4.2 Understanding, Improving and Rectifying Automatic Transformation
Manual program transformation, even with e�cient support tools, may require su�cient e�ort from

the programmer. Fully automated program optimizers are designed to yield decent performance in

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 16. Publication date: March 2018.



Visual Program Manipulation in the Polyhedral Model 16:13

Fig. 6. Users can directly manipulate the visual representation of SCoPs and have the transformed program

generated automatically. Dragging the corner from the center performs loop skewing, to the center—reversal;

selecting the points and dragging them performs index-set spli�ing followed by loop shi�ing. Dependence

arrows orthogonal to axes enable parallel execution.

most cases. However, they are based on imprecise heuristics, which may fail to improve performance

or even degrade it. Polyhedral optimizers are essentially source-to-source black boxes o�ering li�le

control over the optimization process. Clint relies on Chlore [2] to �nd a sequence of primitive

directives equivalent to the automatically computed optimization and let the user replay and modify

it, independently of the optimization algorithm. �e user does not have to know or understand the
internal operation of the optimizer and its con�guration.

Consider the Multi-Resolution Analysis Kernel code, available in doitgen benchmark of the

PolyBench/C 4.2 suite [42] and presented in Fig. 7a. A sequential version of this kernel runs in 0.83s

on our test machine.
2

We applied Pluto
3

polyhedral compiler [11] to extract parallelism from this

code. We also requested Pluto to tile the transformed code, which is likely to improve performance

thanks to data locality and expose wavefront parallelism. A simpli�ed version of the resulting code

is presented in Fig. 7c. It indeed contains tiled and parallelized loops. Yet this code executes in 0.91s,

a 10% slowdown compared to the sequential version (untiled parallel version executes in 50.1s,

a 62× slowdown). Without any further suggestion from Pluto, the user may either stick with a

non-transformed sequential version or with a non-e�cient parallel one. �e code was transformed

so aggressively that the user is unlikely to a�empt code modi�cations or even understanding the

transformation that was applied.

Comparing Clint visualizations before, Fig. 7b, and a�er, Fig. 8a, transformation suggests loop

�ssion took place, which can also be inferred from the generated code. Step-by-step replay con�rms

this and also demonstrates loop tiling followed by skewing. It also shows that inner loops were

parallelized, which is known to result in large barrier synchronization overheads. A fat dot between

coordinate systems indicates there is some reuse between loops, but it is unclear whether Pluto

performed �ssion to ensure legality of skewing and tiling or because of its fusion heuristic. To

discover that, the user may undo the �ssion by fusing the loops back together, Fig. 8a. While

they drag the polygon, legality feedforward appears in a shape of gray arrows that indicate that

transformation would be legal and would preserve parallelism. Motivated by the success and

observing the remaining reuse, the user may decide to fuse the remaining loop as well. �is

transformation would be illegal as indicated by red arrows appearing as the polygon is being

dragged. �e users can still �nish the manipulation, and then use a conventional “undo” command.

2
4× Intel Xeon E5-2630 (Sandy Bridge, 6 cores, 15MB L3 cache), 64 GB RAM, running CentOS Linux 7.2.1511, compiled

with GCC 4.9.3 with -O3 -march=native �ags, benchmark size LARGE, NQ= 140, NR= 150, NP= 160. Average of 12 runs is

reported, kernel execution time only, using high-resolution CPU timers.

3
Pluto 0.11.4 with --parallel --tile, as available on h�ps://github.com/bondhugula/pluto/releases/tag/0.11.4

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 16. Publication date: March 2018.

https://github.com/bondhugula/pluto/releases/tag/0.11.4


16:14 Oleksandr Zinenko, Stéphane Huot, and Cédric Bastoul

for (r = 0; r < NR; r++)

for (q = 0; q < NQ; q++) {

for (p = 0; p < NP; p++) {

sum[p] = 0.0;

for (s = 0; s < NP; s++)

sum[p] += A[r][q][s] * C4[s][p];

}

for (p = 0; p < NP; p++)

A[r][q][p] = sum[p];

}

(a) Original Kernel

0 1 2 3 4 5 p

0 1 2 3 4 5 p

0

1

2

3

4

5

s

0 1 2 3 4 5 p

(b) Visual Representation

(c) Pluto-transformed Kernel −→

for (t1=0;t1 <=NR -1;t1++)

for (t2=0;t2 <=NQ -1;t2++) {

lbp=0;

ubp=floord(NP -1 ,32);
#pragma omp parallel for \

private(lbv ,ubv ,t5,t6,t7)
for (t4=lbp;t4 <=ubp;t4++) {

lbv =32*t4;

ubv=min(NP -1,32*t4+31);
for (t5=lbv;t5 <=ubv;t5++)

sum[t5] = 0.0;

}

#pragma omp parallel for \

private(lbv ,ubv ,t5,t6,t7)
for (t4=lbp;t4 <=ubp;t4++)

for (t5=0;t5 <= floord(NP -1 ,32);t5++)
for (t6=32*t5;

t6 <=min(NP -1,32*t5+31);t6++) {

lbv =32*t4;

ubv=min(NP -1,32*t4+31);
for (t7=lbv;t7 <=ubv;t7++)

sum[t7] += A[t1][t2][t6] *

C4[t6][t7];

}

#pragma omp parallel for \

private(lbv ,ubv ,t5,t6,t7)
for (t4=lbp;t4 <=ubp;t4++) {

lbv =32*t4;

ubv=min(NP -1,32*t4+31);
for (t5=lbv;t5 <=ubv;t5++)

A[t1][t2][t5] = sum[t5];

}

}

Fig. 7. Multi-resolution Analysis Kernel adapted from [42].

�e �nal manually retouched version runs in 0.67s with a (modest) 25% speedup. Without

step-by-step replay and direct manipulation, it would be hard to experiment with di�erent fusion

structures using a general trial-and-error strategy.

Although loop fusion is o�en implemented as a separate optimization problem in polyhedral

optimizers, it is no easier to control externally. Clint allows users to understand and directly modify
the fusion/�ssion structure, instead of reasoning about how a particular heuristic would behave.

5 ASSESSING THE USABILITY OF CLINT
Particular use cases of the previous section illustrate well the potential bene�ts of the tool in speci�c

cases, but they do not help evaluating and understanding its overall usability in more general cases

and with di�erent users. �erefore, as it is commonly done in Human-Computer Interaction, we

conducted a series of user studies considering more abstract tasks that assess the usability of Clint.

5.1 Understanding the Visualization
Although similar visualizations have been already used for descriptive or pedagogical purposes,

there is no empirical evidence of their appropriateness for conveying program structures. We

designed an experiment to assess the suitability of our visual representation. In particular, we

test whether both experts in the polyhedral model and non-expert programmers can establish a

bidirectional mapping between Clint visualization and code.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 16. Publication date: March 2018.



Visual Program Manipulation in the Polyhedral Model 16:15

0 1 2 3 4 5 p

0

1

2

3

4

5

s

6

7

8

0 1 2 3 4 5 p

0 1 2 3 4 5 p

0 1 2 3 4 5 p

(a) Undoing distribution

0 1 2 3 4 5 p

0

1

2

3

4

5

s

6

7

8

0 1 2 3 4 5 p

0 1 2 3 4 5 p

0 1 2 3 4 5 p

(b) Trying more fusion

Fig. 8. Using visual representation to re-adjust automatically computed transformation with immediate

feed-forward on semantics preservation. Dependences violated by the intended transformation turn red,

lines within shapes depict tiles. Shaded shapes are positions before manipulation.

5.1.1 Protocol.

Participants. We recruited 16 participants (aged 18-53) from our organizations. All of them had

experience in programming using imperative languages with C-like syntax and basic understanding

of the polyhedral model and its limitations. Six participants reported to have manually constructed
similar visualizations from scratch and were therefore considered Experts. Because participants

were asked to construct visualizations following given rules, previous exposure to these rules is a

more relevant criterion of expertise than familiarity with the polyhedral model.

Procedure. Our experiment is a [3 × 2] mixed design having two factors:

• Task: mapping direction (between participants)

– Visualization to Code (VC) — writing a code snippet corresponding to a given visual-

ization using a C-like language featuring loops and branches with a�ne conditions;

– Code to Visualization (CV ) — drawing an iteration domain visualization given the

corresponding code.

• Difficulty: problems may be (within participants)

– Simple — two-dimensional with constant bounds;

– Medium — multi-dimensional with constant bounds;

– Hard — two-dimensional with mutually-dependent bounds and branches.

We divided participants in two groups with equal number of experts. Group 1 performed the

VC task, group 2 performed the CV task. �is between participant factor allowed us to present the

same problems to all participants while avoiding learning e�ect. Both tasks were performed on

paper with squared graph support for the CV task. Participants were instructed about visualization

and performed two practice tasks before the session. �ey were asked to work as accurately as

possible without time limit and were allowed to withdraw from a task. Expected solutions were

shown at the end of the experiment. Each session lasted about 20 minutes.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 16. Publication date: March 2018.



16:16 Oleksandr Zinenko, Stéphane Huot, and Cédric Bastoul

Fig. 9. (a) Completion Times increase with task di�iculty but less so for Experts. Results are similar between

Experts and Non-Experts. Error bars are 95% confidence intervals. (b) overall Error Rate is low. Experts are

more successful but fail at simpler tasks; Non-Experts may abandon.

Data Collection. For each trial, we measured Completion Time, Error and Abandon rates. �e

errors were split in two categories: Parameter Errors, when the shape of the resulting polyhedron

was drawn correctly, but linear sizes or position were wrong; Shape Errors, when the shape of the

polyhedron was incorrect. Codes describing the same iteration domain were considered equivalent

(e.g., i <= 4 and i < 5). Upon completion, participants �lled out a demographics questionnaire.

Data Processing and Analysis. We performed log-transformation of the Completion Time to com-

pensate for the positive skew of its distribution, resulting in asymmetric con�dence intervals. Due

to concerns over the limits of null hypothesis signi�cance testing in various research �elds [15, 17],

our analyses are based on estimation [16]. We report symmetric e�ect sizes on means –es =
2(m1 −m2)/(m1 +m2) wherem1,m2 are means– and 95% con�dence intervals (CIs).

5.1.2 Results. We did not observe signi�cant order e�ect on the Error Rate or Completion Time,
meaning that there were neither learning nor fatigue e�ect along the experiment.

Completion Time. We discarded 7 trials in which participants produced erroneous code. Task did

not strongly a�ect the Completion Time: VC took 182s (95%CI = [127s, 262s]) on average while CV
took 215s (95%CI = [156s, 296s]) on average, resulting in an e�ect size of 16.3% (95%CI = [−39.2, 50.9]).

Despite Experts being familiar with similar representations, we observed no interaction between

expertise and Task. Experts performed 56.7% (95%CI = [26.8, 98.8]) faster than Non-Experts for Hard
tasks. Both performed similarly on Easy and Medium tasks. In general, Completion Time is more

consistent across Non-Expert participants than across Expert participants (Fig. 9a). �ese results

suggest that our representation is suitable for both Experts and Non-Experts if the complexity of

the task remains limited. �ey also con�rm our assessment of task di�culty.

Errors and Abandons. Participants performed the tasks with very low error rates, 8.3% (95%CI =

[−3.6%, 20.3%]) for VC tasks and 4.2% (95%CI = [−4.5%, 12.8%]) for CV. Non-Experts proposed wrong

code for Hard VC tasks, equally split between Parameter and Shape Errors. Experts made Parameter
Errors for some Medium tasks. We observed only two withdrawals during a trial, both from non-

experts on a Hard task, one in VC and CV, and a�er more than 500s (Fig. 9b). Overall, such low

error rates make it di�cult to conclude on the causes of the errors, but suggest that both experts

and non-experts users can reliably map Clint visual representation to the code and vice versa.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 16. Publication date: March 2018.



Visual Program Manipulation in the Polyhedral Model 16:17

5.2 Interactive Manipulation
A�er assessing the visualization approach, we focused on interactive program transformation with

Clint. We conducted a preliminary usability study with users already familiar with the visualization.

In order to separate the e�ect of direct manipulation from individual di�erences in expertise,

participants were not allowed to use any automatic parallelizing compiler that would help experts

to achieve be�er performance. We also decided not to use Clay syntax directly as it is li�le-known

and was designed as an intermediate representation for graphical manipulation. Noone a�empted

to use other diretive-based tools.

5.2.1 Protocol.

Participants. We recruited 8 participants (aged 23-47) by direct email to the participants of the

previous study. Since they all were familiar with Clint, our expertise criterion does not apply.

Apparatus. �e study was conducted with a prototype of Clint running on a 15” MacBook Pro.

Participants were interacting with the laptop keyboard and a standard Apple mouse.

Procedure. �e task consisted in transforming a program part so that the maximum number

of loops becomes parallelizable. Participants had to transform the program, but not to include

parallelism-speci�c constructs, e.g., OpenMP pragmas, in order to avoid bias from individual

expertise di�erences. �e experiment has a [3 × 3] within-subject design with two factors:

• Techniqe used in the trial: Code — writing code in an editor of user’s choice, no visual-

ization available; Viz — direct manipulation, no code visible; Choice — full interface, with

direct manipulation and source code editing.

• Difficulty of the task: Easy — two-dimensional case with at most two transformations;

Medium — two- or three-dimensional case with rectangular bounds and at most three

transformations; Hard — two- or three-dimensional case with mutually-dependent bounds

and at least two transformations.

Trials were grouped in three blocks by Techniqe. �e Code and Viz blocks were presented

�rst. �eir order was counterbalanced across participants. Choice was always presented last in

order to assess participants’ preference in using code editing or direct manipulation a�er having

used both. In each block, participants were presented with one task of each di�culty level in

random order. Tasks were randomly picked into di�erent blocks across participants. �ey were

drawn from real-world program examples and polyhedral benchmarks. Trials were not limited

in time and participants were asked to explicitly end the trial by pushing an on-screen bu�on.

Prior to the experiment, participants were instructed about source code transformations and the

corresponding direct manipulation techniques. �ey also practiced 4 trials of medium di�culty

for each technique before the experiment and were allowed to perform two “recall” practice trials

before each Techniqe block. Each session lasted about 60 minutes. �e study was completed by a

demographics questionnaire.

Data Collection. For each trial, we measured:

• the overall trial Completion Time;
• First Change Time, the amount of time from the start to the �rst change in the program

structure (code edited or visualization manipulated);

• Success Rate, the ratio between the number of loops made parallel by transformation and

the total number of possibly parallel loops.

We recorded both the �nal state and all intermediary transformations to the program. During

the analysis, we performed a log-transform of the Completion Time and First Change Time.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 16. Publication date: March 2018.



16:18 Oleksandr Zinenko, Stéphane Huot, and Cédric Bastoul

Fig. 10. (a) Success Rate is higher with Viz, except for Hard tasks. (b) Completion Time is lower with Viz,
especially in successful trials. (c) Ratio First Change Time / Completion Time; the change in trend between

Code and Viz may be due to users adopting an exploratory strategy. Error bars are 95% CIs.

5.2.2 Results and Discussion. Because this experiment was conducted with a small sample, we

mostly report results graphically in order to illustrate general trends. We did not observe any

ordering e�ect of Techniqe or Difficulty on Completion Time and Success Rate.

Accuracy and E�ciency. Fig. 10a suggests, despite large variability, that participants were in

general more successful in transforming the program with direct manipulation than with code

editing. E�ect sizes reach 40% and 44% for Easy and Medium tasks. However, for Hard tasks, the

success rates are identical. �is suggests that �nding a multi-step transformation is a key di�culty.

Fig 10b suggests that, for successful trials, participants performed the transformation consistently

faster in Viz condition. �e di�erence in variability between Code and Viz suggests that direct

manipulation compensates for individual expertise di�erences. Similar Completion Times for failed

trials can be explained, a�er analyzing the transformations, by participants “abandoning” the trial

if their �rst a�empt did not expose parallelism and submi�ing a non-parallelizable version.

Strategy and Exploration. Participants at least tried to perform a transformation in 76% cases

with Code and 94% with Viz, suggesting that visualization engages participants by changing the

perception of task di�culty. We computed the ratio First Change Time/Completion Time as a

measure of “engagement” (Fig. 10c). It increases with di�culty for Code, but drastically decreases

for Viz, suggesting that participants were more likely to adopt an exploratory trial-and-error

strategy supported by the interactive visualization as opposed to code. In Choice condition, the

ratio remains stable, as participants spent time choosing which representation to use.

Choice between Code Editing and Direct Manipulation. In the Choice condition, only 3 participants

interacted with the code. �ey made edits during the �rst 30s and then switched to the visualization.

A�er the experiment, they explained to have modi�ed the code for the sake of analysis, e.g., to see

whether a dependence was triggered by a particular access they temporarily removed.

We observed that most participants were examining the code, but not selecting it. �is observation

suggests that, although they see the limitations of code representation, participants may need it to

relate to the conventional program editing that be�er corresponds to their expertise.

5.3 Preference for Code or Visualization
Our last experiment investigates the use of textual and visual representations for SCoPs. We

relied on eye tracking technology in order to precisely measure visual a�ention between code and

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 16. Publication date: March 2018.



Visual Program Manipulation in the Polyhedral Model 16:19

visualization when both were available. We expect that, given su�cient training, users will prefer

visualization to code analysis if there is a meaningful task-relevant mapping between the two.

�is experiment required a pair of small program analysis tasks such that either code or visual-

ization support each of them be�er, but never both. Participants had to answer a binary question,

with positive or negative formulation to avoid bias. �e study was structured as the previous one.

5.3.1 Protocol.

Participants. We recruited 12 participants (aged 21-34, mean=27) through mailing lists. �ey did

not participate in previous studies and had a self-reported experience in programming of 5 to 15

years. All had normal uncorrected vision.

Apparatus. �e experimental setup consisted of a 15” MacBook Pro with 2880 × 1800 screen at

220 ppi connected to the SMI-ETG v1 eye-tracking system
4
. �e participant was seated 70 cm away

from the screen, which resulted in gaze position accuracy of 27.7px in screen space. �e tracking

system outputs a 30 FPS video stream from its frontal camera. We placed bright-colored tokens on

the screen corners to locate it in the video and compensate for perspective distortion. �ese tokens

were tracked by a custom OpenCV-based script that generated gaze position in screen coordinates

through linear interpolation with perspective correction.

We ensured that the sizes of both representations are identical across conditions, with the content

centered in each of them. Unused space was �lled with neutral gray to avoid distraction. When

visible, multiple representations were 60 px away (2× resolution) to identify gaze into one of them.

Procedure. �e study is a [3 × 3 × 2] within-participants experiment with 4 repetitions per

participant and the following factors:

• Representation used in the trial, one of visual representation (Viz), source code (Code) or

both simultaneously (Choice);
• Difficulty of the question, one of Easy, a loop nest with constant conditions, Medium, a

loop nest with at least 3 non-constant conditions, or Hard, a loop nest with a branch inside

and at least 5 non-constant conditions;

• a binary �estion asked to the user, either concerns the textual form of loop bounds

(Bounds) or a statement instance being executed or not inside a loop (Execution).

Bounds questions were targeted at Code, where the answer is immediately visible, while Execution
questions were targeted at Viz. We refer to these conditions as matching questions, and to other

conditions as mismatching questions. In total, we collected data for 12 · 3 · 3 · 2 · 4 = 864 trials.

Trials were �rst blocked by Representation and then by repetition. Representation blocks are

ordered identically to the previous study. Each of them comprises 4 repetition blocks, each of which

has 6 trials with di�erent �estions and Difficulties in a randomized order. Representation blocks

were preceded by a practice session with 4 trials of Medium di�culty. A�er each trial in Choice
condition, participants were asked about their preferred representation for this question.

Blocks featuring only Code or Viz were conducted without eye tracking. Participants were

wearing the eye-tracking glasses for the third block, a�er we performed a 3-point calibration with

30px tokens and checked if the glasses did not a�ect their vision by performing a read-aloud test.

Participants started the trial by clicking the “start” bu�on and ended it by clicking the answer

bu�on. �ey could abandon the trial a�er at least 15s to avoid immediate abandons for Hard tasks

with mismatching questions. So�ware provided the correct answer a�er each trial. One session

lasted 50 minutes on average and was complemented by a demographic questionnaire.

4
h�p://www.eyetracking-glasses.com/

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 16. Publication date: March 2018.



16:20 Oleksandr Zinenko, Stéphane Huot, and Cédric Bastoul

Fig. 11. (a) mismatching questions required up to 4× more time. (b) Medium and Hard questions with

mismatching representation result in more incorrect answers. Completion Times and Correctness Ratios for

Choice are close to those for matching representation. Dots are means, error bars are 95% CIs, vertical density

plots show underlying distributions.

Data Collection and Processing. We collected the following data:

• Completion Time of the trial;

• Correctness of the answer;

• Preference between Representations for the last block;

• Gaze from the eye-tracking glasses for the last block.

Given gaze position in screen coordinates, we identi�ed the widget in the focus of a�ention as

one out of three: Code Widget, Viz Widget or �estion Widget. Outside any of the widget areas,

the gaze was considered O� Screen. We randomly sampled 10 frames from each video and veri�ed

manually that the script provides exact classi�cation.

Completion Time was log-transformed to compensate the positive skew of its distribution.

5.3.2 Results and Discussion.

Ordering e�ects. We observed a slight decrease in Completion Time between �rst blocks, e�ect

size −13.6% (95%CI = [−37.7, 6.1]), but large variability does not allow to conclude on the presence

of a learning e�ect. Correctness did not vary substantially between blocks.

Completion Time. Mismatching questions required substantially more time to complete the trial

than matching questions, except for Easy tasks as shown in Fig. 11a. With Code, participants spent

14% (95%CI = [−22, 40]) more time on Easy Execution questions, and respectively 132% (95%CI =

[108, 146]) and 134% (95%CI = [111, 147]) more time on Medium and Hard Execution questions than

on the Bounds questions of the same di�culty. Similarly, with Viz representation, they answered

Execution questions 9% (95%CI = [−20, 49]), 40% (95%CI = [1, 102]) , and 57% (95%CI = [10, 129]) faster

for increasing Difficulties. �is result supports the de�nition of mismatching question suggesting

that a representation not adapted for the question slows participants down. �e smaller increase

of Completion Time with Viz compared to Code suggests that Viz representations allows to reason

about mismatching questions easier than Code.
Choice condition shows Completion Times close to those for matching representation. For Bounds

questions, it took on average 6% (95%CI = [−27, 56]), −3% (95%CI = [−40, 56]), and 7% (95%CI = [−33, 70])

more time compared to Code for increasing Difficulties. For Execution questions, it took 5%

(95%CI = [−27, 53]), −14% (95%CI = [−54, 54]) and −21% (95%CI = [−63, 58]) more time than Viz for

increasing Difficulties. �ese results suggest that, given two representations, participants are

likely to chose the matching one. Although they do not spend more time on average, the variability

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 16. Publication date: March 2018.



Visual Program Manipulation in the Polyhedral Model 16:21

Fig. 12. (a) matching representations are more used for Medium and Hard tasks, but Code for Easy tasks. (b)

reported preference demonstrates similar trend. Dots are means, error bars are 95% CIs.

is larger for Choice condition. It suggests that participants only e�ectively use one representation,

but consider both. We illustrate this later with eye tracking data.

Correctness. �e participants succeeded to answer the majority of the questions with 93% (95%CI =

[90, 95]) of correct results on average as shown in Fig. 11b. Abandoned trials were considered as

incorrect answers. Overall trends are similar to Completion Time.
Given Choice, participants had a high success rate overall, except Easy Execution questions with

mean Success Rate 89.5% (95%CI = [79%, 100%]). �is may be explained by choosing the mismatching
Code representation due to visible task simplicity. Due to low error rates, we did not perform any

further analyses. Only 4 trials were abandoned, all featuring mismatching questions, 3 of which

with Code. Abandons took place a�er 91s on average whereas the mean trial duration is 13.7s.

Representation Choice. Our analyses are built on the following metrics, de�ned prior to the study.

Visual Preference, VP — total duration of gaze on the Viz Widget divided by the total duration of

gaze on Viz or Code Widget. Values close to 1 indicate participant looking more at the visualization.

Representation Uncertainty, RU — the measure of a�ention distribution computed as RU =

2 · abs(VP − 0.5). High values mean a�ention was distributed evenly between representations, low

values – that only one representation was used.

We expect Completion Time to increase with Representation Uncertainty as the participant uses

two representations where one would su�ce. At the same time, it may increase even more for lower

values of Representation Uncertainty and high Visual Preference for the unadapted representation.

Fig. 12a shows the Visual Preference for di�erent conditions, the center line corresponding to

the equal distribution of visual a�ention. For Medium and Hard tasks, participants spent more

time on matching representations, �estion e�ect sizes reach 66.6% (95%CI = [4.8, 128.5]) and 81.2%

(95%CI = [16.7, 145.7]), respectively. For Easy tasks they relied on the Code independent of �estion.

�e reported Preference, depicted on Fig. 12b, shows the same tendency. �e preference for Code
drops from 56% in Easy Execution tasks to 6% in Medium and Hard Execution tasks. Since we asked

which representation they found “most useful”, the di�erence between reported Preference and

Visual Preference suggests that participants tend to look at both representations even though they

do not �nd one of them useful. Nevertheless, we observed a positive correlation between reported

Preference and Visual Preference, r =0.41 (95%CI = [0.20, 0.57]), suggesting that participants tend to

use more the representation they �nd useful.

Overall, we observed a correlation between Representation Uncertainty rate and Completion Time,
r =0.41 (95%CI = [0.19, 0.58]) as well as a negative correlation between Representation Uncertainty
rate and Correctness, r =−0.27 (95%CI = [−0.47,−0.04]): the more participants’ a�ention was dis-

tributed between representations, the less correct answers they gave. Although the correlation

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 16. Publication date: March 2018.



16:22 Oleksandr Zinenko, Stéphane Huot, and Cédric Bastoul

does not imply causality, the connection between the simultaneous use of di�erent representations

and the total trial duration suggests that one matching representation should be preferred to two.

6 RELATEDWORK
Interactive Program Parallelization. Program editors supporting interactive program paralleliza-

tion date back to wide adoption of parallelism for scienti�c programming. We review those

speci�cally targeting loop-level optimizations. �e ParaScope editor [33] provided dependence

analysis and interactive loop transformation for High-Performance Fortran (HPF). It reported

the dependence analysis results and allowed the user to perform various loop transformations,

including parallelization. �e D Editor interacted with an distributed HPF compiler to report

optimization choices regarding data distribution and parallelization [29]. SUIF Explorer took a

di�erent approach, collecting dynamic execution and dependence data to suggest loops (or parts

thereof thanks to program slicing [51]) for parallelization [35]. Similarly, DECO records traces of

the memory accesses along with cache hit information and uses pa�ern recognition algorithms to

suggest memory optimizations [47]. NaraView provides a navigable 3D visualization of loop-level

access pa�erns [44]. Contrary to these tools, Clint uses the polyhedral model with its instance-

wise dependence analysis and static guarantees of loop transformation legality. It also allows for

transforming the program using its visualization. Chlore-based transformation replay is not tied to

particular compiler transformations.

Semi-Automatic Polyhedral Transformations. User-assisting tools based on the polyhedral model

emerged as a means to express “classical” loop transformations [52] in the model, the Uni�ed

Transformation Framework (UTF ) stemming from the �rst approach [31]. URUK was proposed

to improve loop transformation composability and enable automated traversal of a transforma-

tion search space [22], delaying the legality analysis until code generation. Loop Transformation
Recipes combine loop transformations, mapping to accelerators and code generation directives

from CHiLL [12] with the POET [54] language for auto-tuning speci�cation. AlphaZ focuses on

equational programming and enables complex memory mapping and management [56]. Clay is

arguably the �rst complete set of directives for polyhedral program transformations [2]. Clint uses

visualization and direct manipulation to address the challenges of directive-based approaches, such

as identifying a promising transformation, targeting it at a program entity or evaluating its e�ects.

Visualizations for the Polyhedral Model. �e literature on the polyhedral model heavily relies on

sca�erplot-like visualizations of iteration domains. Polyhedral libraries include components for

visualization, including VisualPolylib [36] for Polylib and islplot [24] for isl [49]. LooPo was

arguably the �rst tool to visualize the polyhedral dependence analysis information during program

transformation [23]. Tulipse integrates polyhedral visualization into Eclipse IDE [53]. Clint goes

beyond static visualization by enabling direct manipulation to transform the program.

3D iteration space visualizer lets the user interactively request loop parallelization through a

visual representation [55]. Polyhedral Playground [27] augments a web-based polyhedral calculator

with domain and dependence visualizations. PUMA-V provides a set of visualizations that expose

internal operation of the R-Stream compiler [39, 40]. It allows the user to control the optimization-

related compiler options from the visualization. Clint builds on Clay as intermediate abstraction

and does not require the user to control or even understand the operation of a compiler.

7 CONCLUSION
Clint addresses the issues of directive-based approaches in the polyhedral model: target identi�-

cation is made direct without exposing polyhedral-speci�c concepts; transformation legality and

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 16. Publication date: March 2018.



Visual Program Manipulation in the Polyhedral Model 16:23

e�ects are visible immediately during manipulation; reading polyhedrally-transformed code is no

longer necessary. It makes loop optimization accessible, interactive and independent of a particular

algorithm. Our approach enables human-machine partnership where an automatic framework

performs heuristic-driven transformation and provides feedback on demand while a user brings in

domain knowledge to tweak the transformation without modifying the heuristics. Such domain

knowledge may be unavailable to framework designers and di�er between use cases.

Experiments suggest that visualizations lower the expertise necessary to perform aggressive

program restructuring and decrease the time necessary for program analysis. Semi-automatic

transformation decreases the time of program transformation. In our studies, visual semi-automatic

approach to program transformation doubled the success rate and decreased the required time by

a factor of 5 for some program structures. We also contribute to the discussion on visualization

acceptance, suggesting its perceived utility increases with the relative complexity of the task.

Limitations. As Clint was designed using a set of polyhedral test cases with small number of

statements nested in shallow loops, it may be subject to clu�ering for larger program parts. Long

blocks of interdependent statements may result in a profusion of dependence arrows. Visual replay

may become distracting when multiple projections are rendered for deep loops. However, program

parts amenable to the polyhedral model are typically small yet require aggressive transformation.

Future Work. Drawing from the eye-tracking study conclusions and existing limitations, the

visual approach seems promising yet restricted for di�cult cases. We plan to address those by

interleaving visual representations and code fragments and by proposing a zoomable interface with

di�erent levels of detail. At the same time, the visualization may be bene�cial for learning, which

can be supported with a smooth transition between code and visual representation.

Visual clu�ering can be addressed by only displaying salient parts. �ey can be identi�ed

directly by the users, or inferred from their behavior. On the other hand, a polyhedral compiler

may provide additional feedback on, e.g., dependences that prevent parallel execution. Finally,

Clint visualizations may be used conjointly with performance models and runtime evaluators, and

integrated into a larger development environment in order to account for program parallelization

all along the development process.

REFERENCES
[1] Corinne Ancourt and François Irigoin. 1991. Scanning Polyhedra with DO Loops. ACM Sigplan Notices 26, 7 (1991),

39–50.

[2] Lénaı̈c Bagnères, Oleksandr Zinenko, Stéphane Huot, and Cédric Bastoul. 2016. Opening Polyhedral Compiler’s Black

Box. In Proceedings of the 2016 International Symposium on Code Generation and Optimization (CGO 2016). ACM, New

York, NY, USA, 128–138.

[3] Cedric Bastoul. 2004. Code Generation in the Polyhedral Model Is Easier �an You �ink. In Proceedings of the 13th
International Conference on Parallel Architectures and Compilation Techniques (PACT ’04). IEEE Computer Society,

Washington, DC, USA, 7–16.

[4] Cédric Bastoul. 2016. Mapping Deviation: A Technique to Adapt or to Guard Loop Transformation Intuitions for

Legality. In Proc. of the 25th International Conference on Compiler Construction. ACM, New York, NY, USA, 229–239.

[5] Michel Beaudouin-Lafon. 2004. Designing Interaction, Not Interfaces. In Proceedings of the Working Conference on
Advanced Visual Interfaces (AVI ’04). ACM, New York, NY, USA, 15–22.

[6] Michel Beaudouin-Lafon and Wendy E. Mackay. 2000. Rei�cation, Polymorphism and Reuse: �ree Principles for

Designing Visual Interfaces. In Proceedings of the Working Conference on Advanced Visual Interfaces (AVI ’00). ACM,

New York, NY, USA, 102–109.

[7] Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Albert Cohen, and Cédric Bastoul. 2010. �e Polyhedral

Model Is More Widely Applicable �an You �ink. In Compiler Construction, Rajiv Gupta (Ed.). Number 6011 in

Lecture Notes in Computer Science. Springer Berlin Heidelberg, 283–303.

[8] Uday Bondhugula, Aravind Acharya, and Albert Cohen. 2016. �e Pluto+ Algorithm: A Practical Approach for

Parallelization and Locality Optimization of A�ne Loop Nests. ACM Transactions on Programming Languages and

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 16. Publication date: March 2018.



16:24 Oleksandr Zinenko, Stéphane Huot, and Cédric Bastoul

Systems 38, 3 (April 2016), 12:1–12:32.

[9] Uday Bondhugula, Muthu Baskaran, Sriram Krishnamoorthy, Jagannathan Ramanujam, Atanas Rountev, and Pon-

nuswamy Sadayappan. 2008. Automatic Transformations for Communication-Minimized Parallelization and Locality

Optimization in the Polyhedral Model. In Compiler Construction. Springer, Budapest, Hungary, 132–146.

[10] Uday Bondhugula, Oktay Gunluk, Sanjeeb Dash, and Lakshminarayanan Renganarayanan. 2010. A Model for Fusion

and Code Motion in an Automatic Parallelizing Compiler. In Proceedings of the 19th International Conference on Parallel
Architectures and Compilation Techniques (PACT ’10). ACM, New York, NY, USA, 343–352.

[11] Uday Bondhugula, Albert Hartono, Jagannathan Ramanujam, and Ponnuswamy Sadayappan. 2008. A Practical

Automatic Polyhedral Parallelizer and Locality Optimizer. ACM SIGPLAN Notices 43, 6 (2008), 101–113.

[12] Chun Chen. 2008. CHiLL: A Framework for Composing High-Level Loop Transformation. Technical Report 08-897.

University of Southern California.

[13] Chun Chen. 2012. Polyhedra Scanning Revisited. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’12). ACM, New York, NY, USA, 499–508.

[14] Andy Cockburn and Bruce McKenzie. 2001. 3D or Not 3D?: Evaluating the E�ect of the �ird Dimension in a Document

Management System. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’01). ACM,

New York, NY, USA, 434–441.

[15] Geo� Cumming. 2013. �e New Statistics Why and How. Psychological Science 25 (Nov. 2013), 7–29. Issue 1.

[16] Geo� Cumming and Sue Finch. 2005. Inference by Eye: Con�dence Intervals and How to Read Pictures of Data.

American Psychologist 60, 2 (2005), 170–180.

[17] Pierre Dragicevic. 2016. Fair Statistical Communication in HCI. In Modern Statistical Methods for HCI, Judy Robertson

and Maurits Kaptein (Eds.). Springer International Publishing, 291–330.

[18] N. Elmqvist, P. Dragicevic, and J. D. Fekete. 2008. Rolling the Dice: Multidimensional Visual Exploration Using

Sca�erplot Matrix Navigation. IEEE Transactions on Visualization 14, 6 (Nov. 2008), 1539–1148.

[19] Paul Feautrier. 1991. Data�ow Analysis of Array and Scalar References. International Journal of Parallel Programming
20, 1 (1991), 23–53.

[20] Paul Feautrier. 1992. Some E�cient Solutions to the A�ne Scheduling Problem. Part II. Multidimensional Time.

International Journal of Parallel Programming 21, 6 (1992), 389–420.

[21] Paul Feautrier and Christian Lengauer. 2011. Polyhedron Model. In Encyclopedia of Parallel Computing, David Padua

(Ed.). Springer US, 1581–1592.

[22] Sylvain Girbal, Nicolas Vasilache, Cédric Bastoul, Albert Cohen, David Parello, Marc Sigler, and Olivier Temam. 2006.

Semi-Automatic Composition of Loop Transformations for Deep Parallelism and Memory Hierarchies. International
Journal of Parallel Programming 34, 3 (July 2006), 261–317.

[23] Martin Griebl and Christian Lengauer. 1997. �e Loop Parallelizer LooPo-Announcement. In Proc. of the 9th Intl.
Workshop on Languages and Compilers for Parallel Computing (LCPC ’96). Springer-Verlag, London, UK, UK, 603–604.

[24] Tobias Grosser. 2016. islplot: Library to Plot Sets and Maps. (2016). h�p://tobig.github.io/islplot

[25] Tobias Grosser, Armin Groesslinger, and Christian Lengauer. 2012. Polly — Performing Polyhedral Optimizations on a

Low-Level Intermediate Representation. Parallel Processing Le�ers 22, 04 (Dec. 2012), 1250010.

[26] Tobias Grosser, Sven Verdoolaege, and Albert Cohen. 2015. Polyhedral AST Generation Is More �an Scanning

Polyhedra. ACM Transactions on Programming Languages and Systems 37, 4 (July 2015), 12:1–12:50.

[27] Tobias Grosser and Oleksandr Zinenko. 2017. PollyLabs Polyhedral Playground. (2017). h�p://playground.pollylabs.org/

[28] Je�rey Heer, Michael Bostock, and Vadim Ogievetsky. 2010. A Tour �rough the Visualization Zoo. ACM �eue 53, 6

(June 2010), 59–67.

[29] Seema Hiranandani, Ken Kennedy, Chau Wen Tseng, and Sco� Warren. 1994. �e D Editor: A New Interactive Parallel

Programming Tool. In Proceedings of the 1994 ACM/IEEE Conference on Supercomputing (Supercomputing ’94). IEEE

Computer Society Press, Los Alamitos, CA, USA, 733–742.

[30] F. Irigoin and R. Triolet. 1988. Supernode Partitioning. In Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL ’88). ACM, New York, NY, USA, 319–329.

[31] W. Kelly and W. Pugh. 1995. A Unifying Framework for Iteration Reordering Transformations. In Proceedings 1st
International Conference on Algorithms and Architectures for Parallel Processing, Vol. 1. 153–162 vol.1.

[32] Ken Kennedy and John R. Allen. 2002. Optimizing Compilers for Modern Architectures: A Dependence-Based Approach.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[33] K. Kennedy, K. S. McKinley, and C. W. Tseng. 1991. Interactive Parallel Programming Using the ParaScope Editor.

IEEE Transactions on Parallel and Distributed Systems 2, 3 (July 1991), 329–341.

[34] Clemens N. Klokmose, James R. Eagan, Siemen Baader, Wendy Mackay, and Michel Beaudouin-Lafon. 2015. Webstrates:

Shareable Dynamic Media. In Proceedings of the 28th Annual ACM Symposium on User Interface So�ware & Technology
(UIST ’15). ACM, New York, NY, USA, 280–290.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 16. Publication date: March 2018.

http://tobig.github.io/islplot
http://playground.pollylabs.org/


Visual Program Manipulation in the Polyhedral Model 16:25

[35] Shih-Wei Liao, Amer Diwan, Robert P. Bosch, Jr., Anwar Ghuloum, and Monica S. Lam. 1999. SUIF Explorer: An

Interactive and Interprocedural Parallelizer. In Proceedings of the Seventh ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP ’99). ACM, New York, NY, USA, 37–48.

[36] Vincent Loechner. 1999. PolyLib: A library for manipulating parameterized polyhedra. (1999). h�p://icps.u-strasbg.fr/

polylib/#visualpolylib

[37] Benoit Meister, Nicolas Vasilache, David Wohlford, Muthu Manikandan Baskaran, Allen Leung, and Richard Lethin.

2011. R-Stream Compiler. In Encyclopedia of Parallel Computing, David Padua (Ed.). Springer US, 1756–1765.

[38] Donald A. Norman. 2010. Living with Complexity. MIT Press.

[39] E. Papenhausen, K. Mueller, H. Langston, B. Meister, and R. Lethin. 2016. PUMA-V: An Interactive Visual Tool for

Code Optimization and Parallelization Based on the Polyhedral Model. In New York Scienti�c Data Summit. 1–4.

[40] E. Papenhausen, B. Wang, M. H. Langston, M. Baskaran, T. Henre�y, T. Izubuchi, A. Johnson, C. Jung, M. Lin, B.

Meister, K. Mueller, and R. Lethin. 2015. Polyhedral User Mapping and Assistant Visualizer Tool for the R-Stream

Auto-Parallelizing Compiler. In 2015 IEEE 3rd Working Conference on So�ware Visualization (VISSOFT). 180–184.

[41] Sebastian Pop, Albert Cohen, Cédric Bastoul, Sylvain Girbal, Georges-André Silber, and Nicolas Vasilache. 2006.

GRAPHITE: Polyhedral Analyses and Optimizations for GCC. In Proc. of the GCC Developers Summit. 179–197.

[42] Louis-Noël Pouchet. 2016. PolyBench/C 4.2. Polyhedral Benchmark Suite. (2016). h�p://web.cse.ohio-state.edu/

∼pouchet.2/so�ware/polybench

[43] William Pugh. 1991. �e Omega Test: A Fast and Practical Integer Programming Algorithm for Dependence Analysis.

In Proc. of the 1991 ACM/IEEE Conference on Supercomputing (Supercomputing ’91). ACM, New York, NY, USA, 4–13.

[44] Mariko Sasakura, Kazuki Joe, Yoshitoshi Kunieda, and Keijiro Araki. 1999. NaraView: An Interactive 3D Visualization

System for Parallelization of Programs. 27, 2 (April 1999), 111–129.

[45] J. Shirako, L. N. Pouchet, and V. Sarkar. 2014. Oil and Water Can Mix: An Integration of Polyhedral and AST-Based

Transformations. In Intl. Conference for High Performance Computing, Networking, Storage and Analysis. 287–298.

[46] Ben Shneiderman. 1981. Direct Manipulation: A Step Beyond Programming Languages. In Proceedings of the Joint
Conference on Easier and More Productive Use of Computer Systems. (Part - II): Human Interface and the User Interface -
Volume 1981 (CHI ’81). ACM, New York, NY, USA, 143–.

[47] Jie Tao, �omas Dressler, and Wolfgang Karl. 2007. An Interactive Graphical Environment for Code Optimization. In

Computational Science–ICCS 2007. Springer, 831–838.

[48] Nicolas Vasilache, Cedric Bastoul, Albert Cohen, and Sylvain Girbal. 2006. Violated Dependence Analysis. In Proceedings
of the 20th Annual International Conference on Supercomputing (ICS ’06). ACM, New York, NY, USA, 335–344.

[49] Sven Verdoolaege. 2010. Isl: An Integer Set Library for the Polyhedral Model. In Mathematical So�ware – ICMS 2010,

Komei Fukuda, Joris van der Hoeven, Michael Joswig, and Nobuki Takayama (Eds.). Number 6327 in Lecture Notes in

Computer Science. Springer Berlin Heidelberg, 299–302.

[50] Colin Ware. 2012. Information Visualization: Perception for Design (3 ed.). Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA.

[51] Mark Weiser. 1981. Program Slicing. In Proceedings of the 5th International Conference on So�ware Engineering (ICSE
’81). IEEE Press, Piscataway, NJ, USA, 439–449.

[52] Michael Joseph Wolfe. 1995. High Performance Compilers for Parallel Computing. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA.

[53] Yi Wen Wong, Tomasz Dubrownik, Wai Teng Tang, Wen Jun Tan, Rubing Duan, Rick Siow Mong Goh, Shyh-hao Kuo,

Stephen John Turner, and Weng-Fai Wong. 2012. Tulipse: A Visualization Framework for User-Guided Parallelization.

In Euro-Par 2012 Parallel Processing. Springer, 4–15.

[54] Q. Yi, K. Seymour, H. You, R. Vuduc, and D. �inlan. 2007. POET: Parameterized Optimizations for Empirical Tuning.

In 2007 IEEE International Parallel and Distributed Processing Symposium. 1–8.

[55] Yijun Yu and Erik H. D’Hollander. 2001. Loop Parallelization Using the 3D Iteration Space Visualizer. Journal of Visual
Languages and Computing 12, 2 (April 2001), 163–181.

[56] Tomofumi Yuki, Gautam Gupta, DaeGon Kim, Tanveer Pathan, and Sanjay Rajopadhye. 2012. Alphaz: A System for

Design Space Exploration in the Polyhedral Model. In Languages and Compilers for Parallel Computing. Springer,

17–31.

[57] Oleksandr Zinenko, Cédric Bastoul, and Stéphane Huot. 2015. Manipulating Visualization, Not Codes. In IMPACT
2015, Fi�h International Workshop on Polyhedral Compilation Techniques, In Conjunction with HiPEAC 2015. 8.

[58] Oleksandr Zinenko, Stéphane Huot, and Cédric Bastoul. 2014. Clint: A Direct Manipulation Tool for Parallelizing

Compute-Intensive Program Parts. In Visual Languages and Human-Centric Computing (VL/HCC). IEEE, 109–112.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 16. Publication date: March 2018.

http://icps.u-strasbg.fr/polylib/#visualpolylib
http://icps.u-strasbg.fr/polylib/#visualpolylib
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench

	Abstract
	1 Introduction
	2 Program Transformation in the Polyhedral Model
	2.1 Workflow in the Polyhedral Model
	2.2 Transformation Directives

	3 Directly Manipulating Polyhedral Visualizations
	3.1 Structure of the Visualization
	3.2 Directly Manipulable Visual Objects
	3.3 Mapping Interactions to Loop Transformations
	3.4 Mapping Loop Transformations to Animated Transitions
	3.5 Clint Interface

	4 Use Scenarios
	4.1 Assisted Semi-Automatic Transformation
	4.2 Understanding, Improving and Rectifying Automatic Transformation

	5 Assessing the Usability of Clint
	5.1 Understanding the Visualization
	5.2 Interactive Manipulation
	5.3 Preference for Code or Visualization

	6 Related Work
	7 Conclusion
	References

