
DeLICM:
Scalar Dependence Removal at Zero Memory Cost

Michael Kruse
Inria

Paris, France
michael.kruse@inria.fr

Tobias Grosser
ETH Zürich

Zürich, Switzerland
tobias.grosser@inf.ethz.ch

Abstract
Increasing data movement costs motivate the integration
of polyhedral loop optimizers in the standard flow (-O3)
of production compilers. While polyhedral optimizers have
been shown to be effective when applied as source-to-source
transformation, the single static assignment form used in
modern compiler mid-ends makes such optimizers less effec-
tive. Scalar dependencies (dependencies carried over a single
memory location) are the main obstacle preventing effective
optimization. We present DeLICM, a set of transformations
which, backed by a polyhedral value analysis, eliminate prob-
lematic scalar dependences by 1) relocating scalar memory
references to unused array locations and by 2) forwarding
computations that otherwise cause scalar dependences. Our
experiments show that DeLICM effectively eliminates de-
pendencies introduced by compiler-internal canonicalization
passes, human programmers, optimizing code generators,
or inlining – without the need for any additional memory
allocation. As a result, polyhedral loop optimizations can
be better integrated into compiler pass pipelines which is
essential for metaprogramming optimization.

CCS Concepts • Software and its engineering→Com-
pilers;

Keywords Polyhedral Framework, Scalar Dependence,
LLVM, Polly

ACM Reference Format:
Michael Kruse and Tobias Grosser. 2018. DeLICM: Scalar
Dependence Removal at Zero Memory Cost. In Proceedings of 2018
IEEE/ACM International Symposium on Code Generation and
Optimization (CGO’18). ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3168815

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CGO’18, February 24–28, 2018, Vienna, Austria
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 978-1-4503-5617-6/18/02. . . $15.00
https://doi.org/10.1145/3168815

1 Introduction
Advanced high-level loop optimizations, often using poly-
hedral program models [31], have been shown to effectively
improve data locality for image processing [22], iterated
stencils [4], Lattice-Boltzmann computations [23], sparse-
matrices [30] and even provide some of the leading automatic
GPU code generation approaches [5, 32].
While polyhedral optimizers have been shown to be ef-

fective in research, but are rarely used in production, at
least partly because they are disabled in the most common
optimization levels. because none of the established frame-
works is enabled by default in a standard optimization set-
ting (e.g. -O3). With GCC/graphite [26], IBM XL-C [8], and
LLVM/Polly [15] there are three polyhedral optimizers that
work directly in production C/C++/FORTRAN compilers and
are shipped to millions of users. While all provide good per-
formance on various benchmarks, one of the last roadblocks
that prevents enabling polyhedral optimizers by default is
that they generally run as pre-processing pass before the
standard -O3 pass pipeline.
Most compilers require canonicalization passes for their

detection of single-entry-single-exit regions, loops and
iteration count to work properly. For instance, natural loops
need recognizable headers, pre-headers, backedges and
latches. Since a polyhedral optimizer also makes use of
these structures, running the compiler’s canonicalization
passes is necessary before the polyhedral analyzer. This
introduces changes in the intermediate representation that
appear as runtime performance noise when enabling
polyhedral optimization. At the same time, applying loop
optimizations – which often increase code size – early
means that no inlining has yet been performed and
consequently only smaller loop regions are exposed or
future inlining opportunities are prevented.

Therefore, the better position for a polyhedral optimizer is
later in the pass pipeline, after all inlining and canonicaliza-
tion has taken place. At this position the IR can be analyzed
without having to modify it and heuristic inlining decisions
are not influenced. However, when running late in the pass
pipeline, various earlier passes introduce IR changes that
polyhedral optimizers do not handle well.
For instance, Listing 1 works entirely on arrays and is

easier to optimize than Listings 2 to 4. This is because of the
temporaries a and c, which baked-in the assumption that

https://doi.org/10.1145/3168815
https://doi.org/10.1145/3168815

CGO’18, February 24–28, 2018, Vienna, Austria Michael Kruse and Tobias Grosser

for (int i = 0; i < N; i += 1) {
T: C[i] = 0;

for (int k = 0; k < K; k += 1)
S: C[i] += A[i] * B[k];

}

Listing 1. Running example: sums-of-products.

double a;
for (int i = 0; i < N; i += 1) {

T: C[i] = 0; a = A[i];
for (int k = 0; k < K; k += 1)

S: C[i] += a * B[k];
}

Listing 2. Sum-of-products after hoisting the load of A[i].

double c;
for (int i = 0; i < N; i += 1) {

T: c = 0;
for (int k = 0; k < K; k += 1)

S: c += A[i] * B[k];
U: C[i] = c;

}

Listing 3. Sum-of-products after promotion of C[i] to a
scalar.

double c;
for (int i = 0; i < N; i += 1) {

T: c = 0;
for (int k = 0; k < K; k += 1)

S: C[i] = (c += A[i] * B[k]);
}

Listing 4. Sum-of-products after partial promotion of C[i].

the i-loop is the outer loop. Although the data-flow depen-
dencies are the same, new false dependencies are introduced
that prevent the scalars a or c from being overwritten before
all statements using that value have been executed. For List-
ing 3, this means that the dynamic statement instance T (i),
statement T at loop iteration i , cannot execute before the
previous iteration i − 1 has finished. In this case, statement
instance U (i − 1) must execute before T (i), represented by
the (anti-)dependencies

∀i ∈ { 1, . . . ,N − 1 } : U (i − 1) → T (i) .

We call dependencies that are induced by a single mem-
ory location such as a or c, scalar dependencies. Such false
dependencies effectively serialize the code into the order it
is written, inhibiting or at least complicating most advanced
loop optimizations including tiling, strip-mining, and paral-
lelization. Certain specific optimizations can cope well with
scalar dependencies. A vectorizer can, for example, introduce

multiple independent instances of the scalars, one for each
SIMD lane. An automatic parallelizer can privatize the tem-
poraries per thread. However, general purpose loop sched-
uling algorithms such as Feautrier [12, 13] or Pluto [9] do
not take privatization opportunities into account. These are
fundamentally split into an analysis and a scheduling part.
Analysis extracts dependences to determine which execution
orders are possible, and the scheduler uses this information
to find a new ordering that does not violate any dependence.
The analysis result must be correct even for transformations
such as loop distribution and -reversal which are not enabled
by these transformation-specific techniques. Hence, to allow
maximal scheduling freedom, it is desirable to model pro-
grams with a minimal number of scalar dependencies. As
the semantics of Listings 1 to 4 are identical, a good com-
piler should be able to compile them to the same optimized
program, after all loop optimizations have been applied.
In this article we present a novel memory dependence

removal approach that reduces a polyhedral’s compiler sen-
sitivity on the shape and style of the input code and enables
effective high-level loop optimizations as part of a standard
optimization pipeline. Our contributions are:

• A polyhedral value analysis that provides, at statement
instance granularity, information about the liveness
and the source statement of individual data values.

• Greedy Value Coalescing (Section 2): Map promoted
scalars to array elements that are unused to handle
cases such as Listings 3 and 4.

• Operand Tree Forwarding (Section 3): Move instruc-
tion and memory reads to the statements where they
are used to handle cases such as Listing 2.

• An implementation (Section 4) of these techniques in
LLVM/Polly.

• An evaluation (Section 5) showing that polyhedral loop
optimizations still can be effective in the presence of
scalar dependencies.

Sources of Scalar Dependencies Scalar memory depen-
dencies arise for several reasons and not necessarily intro-
duced by compiler passes.

Single Static Assignment (SSA) -based intermediate
representations used in modern compilers cause
memory to be promoted to virtual registers, like the
scalar temporaries a or c from the examples. Values
that are defined in conditional statements are
forwarded through φ-nodes.

Loop-Invariant Code Motion (LICM) moves instruc-
tions that evaluate to the same value in every loop
iteration before the loop, and instructions whose re-
sult is only used after the loop, after the loop. The
transformation of Listing 1 to Listing 2 is an example
for this, but also the temporary promotion of memory
location to a scalar as in Listing 3 or 4.

DeLICM: Scalar Dependence Removal at Zero Memory Cost CGO’18, February 24–28, 2018, Vienna, Austria

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 . . .Θ :
c = 0

c +=
A[0

][0
]

c +=
A[0

][1
]

c +=
A[0

][2
]

c = 0
c +=

A[1
][0

]

c +=
A[1

][1
]

c +=
A[1

][2
]

c = 0
c +=

A[2
][0

]

c +=
A[2

][1
]

c +=
A[2

][2
]

0 S (0, 0) S (0, 1) S (0, 2) S (0, 2) 0 S (1, 0) S (1, 1) S (1, 2) S (1, 2) 0 S (2, 0) S (2, 1) S (2, 2)

Figure 1. Reaching definition and known content of c.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 . . .Θ :
T (0) S (0, 0) S (0, 1) S (0, 2) U (0) T (1) S (1, 0) S (1, 1) S (1, 2) U (1) T (2) S (2, 0) S (2, 1) S (2, 2) U (2)

Figure 2. Lifetime of variable c.

U (0) U (1) U (2)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 . . .Θ :

C[0
] = c

C[1
] = c

C[2
] = c

Figure 3. Reaching definition and known contents of C.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 . . .Θ :

Figure 4. Lifetimes and unused zone of array elements C[0], C[1] and C[2].

C++ abstraction layers allow higher-level concepts to
be represented as objects where components are dis-
tributed over different functions. For instance, a class
can implement a matrix subscript operation by over-
loading the call operator, as uBLAS does [17]. When
invoked the operator will return the content at the
indexed matrix location as a scalar. To optimize across
such abstraction layers, it is essential for inlining to
have taken place.

Manual source optimizations applied by users to not
rely on the compiler to do the optimization. For in-
stance, possible aliasing between array C and A in List-
ing 1 may prevent LICM to be performed by the com-
piler. Even C++17 does not yet provide annotations
(e.g., restrict) to declare the absence of aliasing, so
programmers may just write Listing 3, or just consider
it to be the more natural formulation.

Code generators which are not meant to generate out-
put read by humans, might be inclined to generate
pre-optimized code. TensorFlow XLA, for instance,
passes code to LLVM with pre-promoted variables in
its matrix multiplication kernels [1].

2 Value Coalescing
In this section we present the idea of reusing an array ele-
ment to store a scalar.We first present the idea on an example
(next section) and the general algorithm in Section 2.2.

2.1 Value Coalescing by Example
To illustrate how the coalescing algorithm will work, we
apply it on Listing 3 with N = K = 3. Figures 1 to 6 visualize

the execution of each statement. Assuming that the execu-
tion of each statement takes one time unit, each statement
instance has a timepoint that marks the time passed since
the execution of the first statement. Let a zone be a set of one
or more intervals between (integer) timepoints. For instance,
the zone (3, 5] is the duration between timepoint 3 and 5,
excluding 3 itself.
The reaching definition of a memory location is the last

write to a variable at some timepoint. Figure 1 shows the
reaching definition of the variable c. The reaching definition
in the zone]3, 5] is S(0, 2) because S(0, 2) writes the value
that we would read from c in that zone. If, like it is the
case for S(0, 2), a statement reads from and writes to the
same location, we assume that the read is effective in the
preceding reaching definition. For this reason the definition
zones are always left-open and right-closed. Zones can also
be unbounded, like the reaching definition zone of the last
write S(2, 2) in the example.

Using these reaching definitions, we also know which
value a location contains in the definition zone. In case of
T (0), this is the constant 0. For cases where there is no direct
representation, we use the statement instance itself to rep-
resent the value it writes. Timepoints before the first write
use the value the variable had before timepoint zero.
The same rules also applies to the array C as shown in

Figure 3. The difference is that each array element has its
own reaching definition. In this example, each element is
written exactly once.

The zone from the definition to its last use is the defini-
tion’s lifetime. If there is no use, then the lifetime is empty.
A variable’s lifetime is the union of all its definition’s life-
times. Figure 2 shows the lifetime of c. The lifetime for the

CGO’18, February 24–28, 2018, Vienna, Austria Michael Kruse and Tobias Grosser

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 . . .Θ :

Figure 5. Coalesced memory of c and C[2].

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 . . .Θ :

Figure 6. Coalesced memory of c into separate elements of C.

for (int i = 0; i < N; i += 1) {
T: C[i] = 0;

for (int k = 0; k < K; k += 1)
S: C[i] += A[i] * B[k];
U: C[i] = C[i];

}

Listing 5. Sum-of-products (Listing 3) after mapping of the
scalar c to the array elements C[i].

array C is shown in Figure 4, separately for each of the three
elements.

A location’s zone is unused if there is no lifetime using it.
Unused zone intervals usually extend from the last read of a
reaching definition to the write of the next definition zone.
It is easy to see that the lifetime of c fits into the unused

zone of array C. Hence, there is no need to reserve memory
for both of them; we can save memory by coalescing both
variable’s memory to the same space.

One possibility is to store all of c into the memory of C[2],
as shown in Figure 5. The alternative is to map each lifetime
to a different array element, shown in Figure 6. The latter
results in the code shown in Listing 5.

For our purpose, this latter variant is preferable. The first
reason is that when U (i) reads c to store it to C[i], it has
to load c’s value from C[i]. That is, statement U (i) is not
required anymore. Secondly, and more importantly, the per-
definition lifetimes of c are stored at different locations such
that there are no false dependencies between them.
The observation that statements can be removed if two

adjacent lifetimes use the same storage motivates a simple
heuristic: at a statement that starts a lifetime (that is, an
array element is written), find another lifetime that ends
which can be mapped to the same element. A lifetime can be
mapped if the array element’s unused zone is large enough
for the entire lifetime.
The new lifetime of C[i] is the union of the lifetimes

of the scalar and the previous lifetime. If there were other
unmapped scalars in the program, we could now proceed to
map these scalars as well. If two lifetimes overlap it might
still be possible to coalesce them. In Figure 2 we annotated
the known content at each timepoint. If the lifetimes overlap,
but are known to contain the same value, they can still be
mapped to the same memory location. This is important for
cases such as Listing 4. Here, the writeback of c to C[i] in

1 Knowledge = computeKnowledge();
2 for (w : Writes) {
3 if (!eligibleForMapping(w))
4 continue;
5 t = getAccessRelation(w);
6 Workqueue = getInputScalars(w.Parent);
7 while (!Workqueue.empty()) {
8 s = Workqueue.pop();
9 if (!eligibleForBeingMapped(s, t))
10 continue
11 Candidate = computeKnowledge(s);
12 Proposal = mapKnowledge(Candidate, t);
13 if (isConflicting(Knowledge, Proposal))
14 continue;
15 WriteStmts = { w.Parent | w ∈ WritesTo(s) };
16 for (a : ReadsTo(s) ∪ WritesTo(s))
17 a.setAccessRelation(Target);
18 Knowledge = Knowledge ∪ Proposal;
19 for (w : WriteStmts)
20 Workqueue = Workqueue ∪ getInputScalars(w);
21 }
22 }

Listing 6. Greedy scalar mapping algorithm.

every instance of statement S(i, j) does not end its lifetime,
but overlaps with the lifetime of C[i].

2.2 The Greedy Scalar Mapping Algorithm
We have seen the outline of how to coalesce scalars and array
elements to avoid dependencies. In this section, we describe
a general algorithm that selects the memory to be coalesced.
The algorithm’s pseudocode is shown in Listing 6. It maps
the first variable it sees without backtracking after a possible
mapping is found, i.e., a greedy algorithm. In the following
paragraphs we explain the algorithm in detail.
The algorithm begins by collection data about the loop

nest, which we call Knowledge (line 1). It includes informa-
tion about each memory location referenced in this system,
scalars as well as array elements:

• All writes to a location.
– The reaching definition derived from the writes.
– Thewritten value is the known content for the reach-
ing definition’s zone.

• All reads from a location.
– The lifetime zones derived from the reads and the
reaching definitions.

DeLICM: Scalar Dependence Removal at Zero Memory Cost CGO’18, February 24–28, 2018, Vienna, Austria

• All memory location’s unused zones, which is the com-
plement of all lifetimes occupying that location. Alter-
natively to using the complement, one can compute
the zones from each reaching definition’s last read to
the next write.

All of these can be represented as polyhedra with dimen-
sions tagged as belonging to an array element, timepoint,
statement or value.
Every write potentially terminates an unused zone right

before it. Somemapping target locations might be unsuitable,
for instance because the store is not in a loop or the span of
elements written to is only a single element (like in Figure 6).
Such targets are skipped (lines 3–4).

For a givenwrite, we collect two properties: first, the target
array element for each statement instance that is overwrit-
ten and therefore causes an unused zone before it (Target
on line 5); second, the list of possible scalars that might be
mapped to it (getInputScalars at line 6). The best candi-
date for mapping is the value that is stored by the write be-
cause it would effectively move the write to an earlier point
where the value is written (likeU (i) in Listing 5). These can-
didates are used to initialize a queue, with the best candidate
coming out first. Prioritized candidates are those that lead
to a load from the target.

Let s be the next candidate scalar (line 8). Similar to check-
ing the eligibility of w being a mapping target, we check
whether s is eligible to be mapped to t (Lines 9–10). Reasons
for not being a viable scalar include being larger than the
target location, being defined before the modeled code or
used after it (because these accesses cannot be changed). The
exact requirements depends on the intermediate represen-
tation used by the implementation. Once s passes the basic
checks, we compute the additional knowledge for it in case
it is mapped to t. It consists of the lifetime for the previously
unused array elements of t and the known content of s,
which then becomes the known content of t. We call this
supplemental knowledge the Proposal (line 11).
The proposal is then compared with the existing knowl-

edge to see whether there are conflicts (line 13). For two
knowledges A and B to be compatible (non-conflicting), they
must meet the following conditions for every memory loca-
tion:

• The lifetime zones of A and B must be disjoint, except
when they share the same known content.

• Writes in A cannot write into B’s lifetime zone, except
if the written value is already B’s known content.

• Writes in B cannot write into A’s lifetime zone, except
if the written value is already A’s known content.

A conflict is a violation against one of these rules. They
ensure that the semantics of the program remain the same
after carrying out the mapping of the proposal. If a conflict
is found, the proposal is rejected and the next scalar from
the queue is tried.

for (int i = ...) {
c = ...

T: use(c);
U: A[i] = g(c);

}

for (int i = ...) {
A[i] = ...

T: use(A[i]);
U: A[i] = g(A[i]);

}

Listing 7. Example when coalescing restricts scheduling
possibilities. On the left statements T and U can be executed
in exchanged order; after mapping c to A[i] (right) this is
not possible anymore.

Note that a write to A or B does not induce a lifetime if
that value is never read. Still, such a write to, say A, would
overwrite the content of B if coalesced together. Therefore
both directions need to be checked.

If there is no conflict, then the proposal is applied. All uses
of s are changed to uses of t (line 17). The proposal is used
to update the knowledge (line 18) by uniting the lifetimes
and known content. Since writes to s have become writes to
t, a new unused zone ends at each write, to which variables
can be mapped to. As with the original write (line 6), we
add possible mapping candidates to the work queue (line 20).
Because after mapping there are no more writes to the lo-
cation of s, we use the writing statements from before the
transformation (line 15).

The algorithm runs until no more variable can be mapped
to t and then continues with the next write, until all writes
have been processed (line 2). As Listing 7 shows, coalescing
can also add additional false dependencies. However, loop-
carried dependencies block more optimizations that loop-
internal ones.

3 Operand Tree Forwarding
The mapping algorithm is only able to remove scalar depen-
dencies if there is an unused array element, or one that stores
the same value anyway. For a in Listing 2 this does not apply.
Fortunately, we can just repeat the computation of a in every
statement it is used in. The result of such a forwarding is
shown in Listing 8. Thereafter the variable a becomes dead
code.
Operand forwarding is the replication of instruction

operands defined by operations in other statements. This is
possible when the operation’s arguments are still available,
which can in turn be made available by forwarding them as
well such that transitively we get an operand tree.

Besides pure instructions whose result only depend on
their arguments, replicating a load requires that the location
loaded from contains the same value. Instead of determining
whether the memory location is unchanged, we can reuse the
knowledge we already need to obtain for greedy mapping.
Given the known content information at the timepoint of
the target of the forwarding, any value required by the target
statement can be reloaded. The two advantages are that the
reload does not need to happen from the same location as

CGO’18, February 24–28, 2018, Vienna, Austria Michael Kruse and Tobias Grosser

double a, a_S;
for (int i = 0; i < N; i += 1) {

T: C[i] = 0; a = A[i];
for (int k = 0; k < K; k += 1) {

S: a_S = A[i]; C[i] += a_S * B[k];
}

}

Listing 8. Operand tree forwarding applied on sum-of-
products (Listing 2).

1 bool canForwardTree(Target, s, Knowledge) {
2 e = Knowledge.findSameContent(s, Target);
3 if (e) return true;
4 if (s is not speculatable)
5 return false;
6 for (op : operands(s))
7 if (!canForwardTree(Target, op, Knowledge))
8 return false;
9 return true;
10 }

Listing 9. Determine whether an operand tree is forward-
able.

1 void doForwardTree(Target, s, Knowledge) {
2 e = Knowledge.findSameContent(s, Target);
3 if (e) {
4 Target.add(new Load(e));
5 return;
6 }
7 Target.add(s);
8 for (op : operands(s))
9 doForwardTree(Target, op, Knowledge);
10 }

Listing 10. Replicate an operand tree to TargetStmt.

the original load, and the reloaded value does not even need
to be a result of a load.

Listing 9 shows the pseudocode that determines whether
an operand tree rooted in s whose result is used in another
statement, can be forwarded to that target statement. If
canForwardTree returns a positive result, the procedure
doForwardTree in Listing 10 can be called to carry-out the
forwarding.
Both procedures are recursive functions on the operand

tree’s children. They are correct on DAGs as well, but lead to
duplicated subtrees. doForwardTree repeats the traversal of
canForwardTree, but can assume that every operation can
be forwarded. A tree that contains a non-forwardable subtree
would require the introduction of a scalar dependency for
its value, hence such trees are not forwarded at all.

The method findSameContent (line 2) looks for an array
element for each statement instance of the target that con-
tains the result of operation s. If it finds such locations, the

operand tree does not need to be copied but its result can be
reloaded from these locations. The new load is added to the
list of operations executed by the target statement (line 4 of
doForwardTree).

If the operation is speculatable (line 4 in canForwardTree),
i.e., its result depends only on its arguments, we also need
to check whether its operands are forwardable (line 7) since
copying the operation to the target will require its operands
to be available as well. In doForwardTree, the speculatable
operation is added to the target’s operations (line 7) and
a recursive call on its operands ensures that the operands
values are as well available in the target statement (line 9).

4 Implementation
Both transformations, value mapping and operand tree for-
warding, have been implemented in Polly [15]. Polly in-
serts itself into the LLVM pass pipeline depending on the
-polly-position option, as shown in Figure 7, which in
the following we shorten to early and late.

LLVM’s early mid-end is (also) meant to canonicalize the
input IR: to find a common representation for inputs that
have the same semantics. Transformations should never
make a follow-up analyses worse, e.g., not introduce irre-
ducible loops or remove pointer aliasing information. Loop-
Invariant Code Motion and Partial Redundancy Elimina-
tion is part of the IR’s canonicalized form. Low-level and
most target-specific transformations take place later in the
pipeline.

Because scalar dependencies are destructive to polyhedral
optimization, Polly’s default configuration used to be early.
Polly depends on LLVM’s loop detection and its ScalarEvo-
lution analysis, such that a selected set of passes are added
before Polly.
In the late position, Polly is added after LLVM’s own

canonicalization. It first runs the operand tree forwarding
followed by the greedy mapping algorithm. A simplification
pass cleans up accesses and statements that have become
unnecessary. The vectorizer expects canonicalized IR, so the
mid-end passes are run again if Polly generated any code
in that function. The pipeline is tuned for the current pass
order (e.g. the inliner’s heuristics) and used in production,
therefore adjusting LLVM’s canonicalization passes for the
needs of Polly is not an option.

IR-Specific Algorithm Details Because LLVM-IR is an
SSA-based language, a value can be uniquely identified by
the operation and the statement instance it is computed in.
We use this for known content analysis. For instance, the
value a produced by statementT (i) in Listing 2 is represented
by [T (i) → a]. Because a is loaded from the array A, the
content of A[i] at the time of the execution of T (i) can also
be identified as [T (i) → a].

In addition to the SSA-value for result of the φ-node, Polly
models a φ with an additional memory location as shown in

DeLICM: Scalar Dependence Removal at Zero Memory Cost CGO’18, February 24–28, 2018, Vienna, Austria

Figure 7. Position of the Polly polyhedral optimizer in the LLVM pass pipeline.

pred1:
br label %basicblock ; write 0.0 to %v.phiops

pred2:
br label %basicblock ; write 1.0 to %v.phiops

basic_block:
; read from %v.phiops
%v = phi float [0.0, %pred1], [1.0, %pred2]

Listing 11. Handling of φ-nodes is analogous to SSA-values,
but with multiple writes and a single read to/from a virtual
%v.phiops variable.

Listing 11. Listing 6 does not assume a single write per scalar,
hence is also applicable. The fact that there is only one read
from the additional locations helps computing the lifetime.
The φ’s known content can be replaced by the incoming
value in simple cases.

5 Evaluation
The evaluation consists of two parts. In Section 5.1 we ana-
lyze the transformations applied by DeLICM itself and which
polyhedral optimizations are enabled by it. The measure-
ments are done statically by the compiler without executing
the code. The second part in Section 5.2 evaluates the speed-
up gained through the enabled transformations.

The code is optimized for and run on an Intel Xeon E5-2667
v3 (Haswell architecture) running at 3.20 GHz. Its cache sizes
are 32 KB (L1i), 32 KB (L1d), 256 KB (L2) and 20 MB (L3). The
machine has 8 physical and 16 logical cores, but we only eval-
uate single-thread performance. The hardware details are
mostly relevant for the performance tests, but some mid-end
passes make use of target-specific information as well. Hence,
hardware details can influence which transformations are
carried out. DeLICM itself does not make use of hardware

architecture information. The compiler used for all evalua-
tions is based on clang 6.0.0 (SVN revision 317808) using the
optimization level -O3 -march=native -ffast-math for all
tests. All evaluation is done on Polybench/C 4.2.1 beta [24].
Polybench is a collection of 30 benchmarks with kernels

typical in scientific computing. Polybench/C benchmarks
are written with polyhedral source-to-source compilers in
mind with the consequence that it avoids scalar variables
since they are known to not work well in the polyhedral
model. Instead, we let the LLVM scalar optimizers (mostly
LICM and GVN) introduce the scalar dependencies by run-
ning Polly late in LLVM’s pass pipeline. This allows us to
compare the DeLICM result to a reference source without
scalar dependences.
Unfortunately, we hit a problem where the combination

of the LLVM passes LoopRotate and JumpThreading causes
ScalarEvolution to being unable to analyze a loop when an
inner loop has no iterations. We modified the Polybench
source to avoid this problem (by peeling off the first outer
loop), because this is a shortcoming of LLVM’s canonicaliza-
tion, unrelated to Polly. We are in contact with the LLVM
community to resolve this in the future.

In order to allow LLVM’s scalar optimizers to work better,
we enable Polybench’s use of the C99 restrict keyword
(-DPOLYBENCH_USE_RESTRICT). This tells the compiler that
arrays do not alias each other which allows more code
movement. For all tests, we use Polybench’s
-DEXTRALARGE_DATASET, which sets the problem size such
that the computation requires about 120MB of memory.

To show the effect of C++ and inlining, we translated four
of the benchmarks to C++ using uBLAS [17]: covariance, cor-
relation, gemm and 2mm. The former two use the original
algorithm but instead of an array, they use uBLAS’s vector
and matrix types. The latter two use uBLAS own implemen-
tation of the matrix-matrix product. uBLAS is a header-only
library with extensive use of expression templates and has
no target-specific optimizations.

CGO’18, February 24–28, 2018, Vienna, Austria Michael Kruse and Tobias Grosser

Table 1.Number of applied DeLICM transformations at early
and late positions in the LLVM pass pipeline. “Forwards” is
the number of copied instructions (line 7 of Listing 10), plus
the number of reloads from arrays (line 4). “Mappings” is
the number of SSA values (plus φ nodes) mapped to array
locations (number of scalars that pass the conflict test at
line 13 of Listing 6).

early late

Benchmark Fo
rw

ar
ds

M
ap
pi
ng

s

Fo
rw

ar
ds

M
ap
pi
ng

s

Data Mining
correlation 0 0 1+1 3+3
covariance 0 0 2+0 2+2

Linear Algebra
gemm 0 0 1+1 0

gemver 0 0 0+2 2+2
gesummv 0 0 0 2+2

symm 0 0 1+4 0
syr2k 0 0 0+2 0
syrk 0 0 1+1 0
trmm 0 0 0+1 0
2mm 0 0 0 2+2
3mm 0 0 0 3+3
atax 0 0 0 1+1
bicg 0 0 0+1 1+1

doitgen 0 0 0 0
mvt 0 0 0 2+2

Solvers
cholesky 0 0 0 0
durbin 3+3 2+1 0 0

gramschmidt 0 0+3 0 2+2
lu 0 0 0+1 0

ludcmp 0+3 0+11 0+3 1+7
trisolv 0 0 1+1 0

Dynamic Programming
deriche 8+0 0+4 4+0 0+4

nussinov - - - -
Shortest Path
floyd-warshall 0 0 0 0
Stencils

adi 74+0 0 0+4 0+2
fdtd-2d 0 0 0+3 0
heat-3d 0 0 0+2 0

jacobi-1d 0 0 0+4 0
jacobi-2d 0 0 0+2 0
seidel-2d 0 0 0+6 0

uBLAS C++
correlation - - 1+3 3+0
covariance - - 2+2 2+0

gemm - - 0+1 1+1
2mm - - 0+1 2+2

Table 2. Number of scalar writes in loops before and after
DeLICM. Each cell shows the number of SSA-scalar plus the
number of φ write accesses. “Post-Opts” are additional post-
scheduling optimizations that can be applied with DeLICM
compared to without it. The first is the number of additional
tiled loops and the number in parentheses the number of
additional optimized matrix-multiplications.

early late

Benchmark be
fo
re

D
eL
IC
M

Po
st
-O

pt
s

be
fo
re

D
eL
IC
M

Po
st
-O

pt
s

Data Mining
correlation 0 0 0 4+6 0 +5
covariance 1+0 1+0 0 3+4 1+0 +3

Linear Algebra
gemm 0 0 0 1+0 0 0 (+1)

gemver 0 0 0 4+4 0 +3
gesummv 0 0 0 2+4 0 +1

symm 0+5 0+5 0 5+2 1+2 0
syr2k 0 0 0 2+0 0 +1
syrk 0 0 0 1+0 0 +1
trmm 0 0 0 1+2 0 +2
2mm 0 0 0 2+4 0 +2 (+2)
3mm 0 0 0 3+6 0 +3 (+3)
atax 0 0 0 1+2 0 +2
bicg 0 0 0 2+2 0 0

doitgen 0 0 0 1+2 1+2 0
mvt 0 0 0 2+4 0 +2

Solvers
cholesky 0 0 0 0 0 0
durbin 4+5 1+3 0 5+4 5+4 0

gramschmidt 1+5 1+0 0 3+4 1+0 +3
lu 0 0 0 0+2 0 +1

ludcmp 3+18 0 0 4+14 0 0
trisolv 0 0 0 1+4 0+4 0

Dynamic Programming
deriche 0+28 0+20 0 0+28 0+20 0

nussinov - - - - - -
Shortest Path
floyd-warshall 0 0 0 0 0 0

Stencils
adi 0 0 0 0+12 0 +4

fdtd-2d 0 0 0 1+4 0 0
heat-3d 0 0 0 0+4 0 +1

jacobi-1d 0 0 0 0+8 0 +1
jacobi-2d 0 0 0 0+4 0 +1
seidel-2d 0 0 0 0+12 0 0

uBLAS C++
correlation - - 0 3+6 0 +4
covariance - - 0 2+4 0 +4

gemm - - 0 2+2 0 +2 (+1)
2mm - - 0 3+4 0 +4 (+2)

DeLICM: Scalar Dependence Removal at Zero Memory Cost CGO’18, February 24–28, 2018, Vienna, Austria

co
rre
lat
ion

co
va
ria
nc
e

ge
mm

ge
su
mm

v

sy
r2k sy
rk

trm
m

2m
m

3m
m

ata
x

bic
g

do
itg
en

tri
so
lv ad
i

fdt
d-2

d
jac
ob
i-1
d

sei
de
l-2
d

co
rre
lat
ion

-u
bla
s

co
va
ria
nc
e-u

bla
s

ge
mm

-u
bla
s

2m
m-
ub
las

0.25
0.5
1
2
4
8
16
32
64

Sp
ee
du

p
fa
ct
or

Early Early DeLICM Late Late DeLICM

Figure 8. Speedups relative to clang without Polly (-O3) using median execution times. Each experiment ran 5 times, with
all median absolute deviations being less than %2 of the median. DeLICM is able to recover the original performance at late
position in most cases.

5.1 Static Evaluation
Table 1 shows how many transformations the DeLICM algo-
rithms applies on the benchmarks. To show how effective
they were, Table 2 shows the number of scalar writes in loops.
We use this measure as a proxy for scalar dependencies. Not
every scalar dependency inhibits loops transformations (for
instance, using a constant defined before the loop), but every
scalar write in a loop causes a false dependency itself in the
next iteration, and every dependency involves a write access.

When Polly is at the early position, only few scalar depen-
dencies are present and consequently DeLICM does mostly
nothing. At the late position, DeLICM successfully removed
all scalar dependencies in 24 (of 31 that had at least one)
programs.

One of the trickier cases is atax in which the scalar tempo-
rary, called tmp, was manually expanded into an array. The
LLVM passes almost entirely recovered the scalar nature of
the temporary so it is not obvious to find a mapping loca-
tion. The GVN partial redundancy elimination introduces
φ nodes into stencil iterations to reuse an already loaded
value in the next stencil. This effectively serializes the inner
loop. To make it parallel again, the φ-nodes have either to
be forwarded or traversed to find the original location. Our
implementation does the latter.
In the following, we discuss cases where not all scalar

dependencies could be removed and explore the reasons
for it. The programs symm, durbin and deriche use more
scalars in their loops than there are unused array elements.
DeLICM does not help in these cases. In covariance, the de-
pendence is caused by a division that cannot be forwarded
because LLVM cannot prove that the divisor is non-zero. The
LLVM framework provides no property for instructions that
can be executed multiple times, if they are executed at least
once. We had to fall back to the stricter speculatable property
which also allows instructions to be executed if they were

not executed at all in the original program. Anyway, Polly is
able to extract the performance-critical code and optimize
it. The remaining scalar write in gramschmidt is due to a
call to the sqrt function whose result is used in an inner
loop. LLVM does not consider sqrt speculatable such that
the operand tree forwarder does not copy a call to it. LLVM’s
LoopIdiom pass introduces a memset memory intrinsic into
doitgen’s code. Although Polly handles memsets, it causes
each array element to be split into byte-sized subelements.
Our implementation of content analysis does not yet sup-
port mixed-size array elements. Similarly, trisolv has some
confusion about an array’s type. Uses of the same array as
64-bit integer and double-precision floating-point occur in
the same function .
Polly failed to recover the array subscripts of an access

in nussinov (at early and as well as at late position) and
because of it, gives up optimizing it. Polly’s access analysis
is not invoked. LLVM does not move code out of loops in
floyd-warshall, hence DeLICM has nothing to do. The func-
tion calls to the overloaded operators in the C++ codes also
causes Polly to bail out. After inlining, they are similar to
the original Polybench implementation.

5.2 Performance Evaluation
The runtime speed-ups are shown in Figure 8 on a logarith-
mic scale. The speedups are relative to the execution time
of the benchmark compiled with clang -O3 without Polly.
Each execution time is the median of 5 runs. A run of all
benchmarks takes in the range of 1 hour to complete.

With Polly executed early in the pipeline (“Early” bars), we
gain the highest speed-ups with the matrix-multiplication
family (gemm, 2mm, 3mm) due to a special optimization path
for it. The benchmarks using uBLAS cannot be optimized be-
cause they contain not-yet inlined function calls. The bench-
marks gemver, symm, mvt, cholesky, durbin, gramschmidt,

CGO’18, February 24–28, 2018, Vienna, Austria Michael Kruse and Tobias Grosser

lu, ludcmp, deriche, floyd-warshall, nussinov, heat-3d and
jacobi-2d are not shown in the figure because neither the
pipeline position nor DeLICM have a significant effect on
their execution speeds, in other cases Polly’s transforma-
tions even cause slowdowns. Our contribution is to enable
transformations, not about which one to select. Therefore
any change in performance relative to Polly switched off is
a sign that some transformation has been performed and
therefore is a success for DeLICM. We continue working on
the heuristics that improve performance, or at least do not
regress performance.
Executing Polly at the late position causes the perfor-

mance to fall back to the performance without Polly (“Late”).
Generally, this is because Polly does not generate any code
because of new scalar dependencies. Enabling DeLICM (“Late
DeLICM”) almost always restores the original performance.
For some benchmarks, we even got a (higher) speed-up
where there was none before: trmm and fdtd-2d. Thanks
to the inlining having happened at the late position, the C++
benchmarks using uBLAS can now be optimized as well. The
uBLAS matrix-multiplication benchmarks are not vector-
ized by clang without Polly , which leads to an even higher
speedup when it is vectorized by Polly. The only benchmark
where the performance could not be recovered are doitgen
and trisolv, caused by scalar dependencies that could not be
removed.

Applying DeLICM at the beginning of the LLVM pipeline
(“Early DeLICM”), without LICM and GVN, has little effect
as the Polybench benchmarks avoid scalar dependencies in
the source.

6 Related Work
We can categorize most work on avoiding false dependencies
into two categories: memory duplication and ignoring non-
flow dependencies.
The first category provides additional memory such that

there are fewer false dependencies between unrelated com-
putations. Techniques such as renaming, scalar expansion
and node splitting [2, 18] have been proposed even before the
appearance of the polyhedral model. Taken to the extreme,
every statement instance writes to its own dedicated mem-
ory [14]. Like in SSA, every element is only written once
and therefore this mode is also called Dynamic Single Assign-
ment (DSA) [28] or Array SSA [16]. This eliminates all false
dependencies at the cost of potentially greatly increasing
memory usage. Refinements of this technique only duplicate
a private copy per thread [20]. This can solve the problem for
parallelism but does not enable inner-thread scheduling such
as tiling. [27, 29] propose privatization on demand, when an
optimization finds restricting dependencies.

There is the possibility to contract array space after sched-
uling [6, 7, 11, 19, 25, 34]. However, the re-scheduled program

may inherently require more memory than the source pro-
gram, especially if the scheduler is unaware that its decisions
may increase the memory footprint.

The second strategy is to remove non-flow dependencies
when it can be shown they are not important to the correct-
ness of the transformed program. Which dependencies can
be removed depends on the scheduling transformation to
be performed. A technique called variable liberalization [21]
allows loop-fusion. Tiling and parallelism can be recovered
using live-range reordering [3, 33].

Both come with the disadvantage that they are only enable
specific optimizations. In case of live-range reordering, the
Pluto algorithm is still used with the scalar dependencies to
determine bands (sets of perfectly nested loops). Live-ranges
are then used to determine whether these bands are tileable
or even parallel. They are if the life ranges are restricted
to the band’s body. This means that with this algorithm
Listing 1 has a tileable band of two loops while for Listings 2
to 4 the two loops that cannot be combined into a band.

A conflict set as presented in [7, 11] can be useful to deter-
mine whether a scalar is conflicting with an array (Listing 6
line 13). For the purpose of DeLICM we additionally need to
analyze the stored content. One participant of the conflict
set is always a scalar such that a full-array conflict set is not
needed.

7 Conclusion
This paper presented two algorithms to reduce the number
of scalar dependencies that are typically the result of scalar
mid-end optimizations such as Loop-Invariant Code Motion,
but also appear in hand-written source code. We use DeLICM
as an umbrella name for two algorithms. The first algorithm
handles the more complicated case of register promotion,
where an array element is represented as scalars during a
loop execution. The approach is to map the scalar to unused
memory locations. This problem is akin to register alloca-
tion, with mapping targets being array elements instead of
processor registers – an NP-complete problem [10]. We em-
ploy a greedy strategy which works well in practice. The
second algorithm implements operand tree forwarding. It
copies side-effect-free operations to the statements where
their result is needed or reloads values from array elements
that are known to contain the same value.
We implemented both algorithms in Polly, a polyhedral

optimizer for the LLVM intermediate representation. The
experiments have shown that DeLICM can remove almost all
avoidable scalar dependencies. Thanks to this effort, it also
becomes worthwhile to execute Polly after LLVM’s IR nor-
malization and inlining, allowing, for instance, polyhedral
optimization of C++ code with templates.

DeLICM: Scalar Dependence Removal at Zero Memory Cost CGO’18, February 24–28, 2018, Vienna, Austria

A Artifact Appendix
A.1 Abstract
The artifact consists of a Github repository where each
branch represents an experiment. The branches contain the
Polly source code (unmodified, since all required changes
have been upstreamed), and a script that compiles LLVM
with Polly and runs the experiments.

In addition, we provide the experimental results used for
evaluation (Section 5) and a script to extract and compare
results.

A.2 Artifact Check-List (Meta-Information)
• Algorithm: DeLICM - avoid scalar dependencies in the
polyhedral model.

• Program: Polybench/C 4.2.1 beta [24]. However, we use a
slightly modified version available at github.com/
Meinersbur/test-suite/tree/cgo18/Performance.

• Compilation: Any C++11-compatible compiler to boostrap
Clang which then compiles the benchmarks.

• Binary: Benchmark binaries included in result branches for
our platform (Intel Haswell), but we strongly recommend
recompiling for each individual platform.

• Data set: EXTRALARGE_DATASET (predefined by Polybench).
• Run-time environment: Any Unix system supported by
LLVM.

• Hardware: Any platform supported by LLVM. For compar-
ison with our reference results, using a similar platform as
described in Section 5 is advised (Intel Xeon E5-2667 v3).

• Output: A JSON file which can be analyzed by an additional
script. The script prints the median/average/min/max of the
measurements and the relative difference between experi-
ments to the console. Commands that reproduce the data in
the article are provided.

• Experiments: Python scripts that bootstrap clang, compile
and run the benchmarks.

• Publicly available?: Yes, in Github repository.

A.3 Description
A.3.1 How Delivered
The artifact is available for download from https://github.com/
Meinersbur/cgo18. Cloning the repository takes around 30MB of
disk space.

$ git clone https://github.com/Meinersbur/cgo18

A.3.2 Hardware Dependencies
Any platform supported by LLVM, see
llvm.org/docs/GettingStarted.html#hardware.

The precompiled experiments were compiled for/on Red Hat
Enterprise Linux Server 6.7 x86_64 (Intel Haswell) and may or may
not work on different platforms. For optimal results, we recommend
recompiling for each platform.

A.3.3 Software Dependencies
All requirements needed to compile LLVM, see
llvm.org/docs/GettingStarted.html#software. In addition, the

Table 3. Description of all predefined experiments.

Branch Position DeLICM Description

A10_nopolly - - without Polly
A20_polly late enabled current default
A30_polly_early early disabled
A40_polly_late late disabled
A50_polly_early_delicm early enabled

provided scripts assume an environment where the following
software is installed:

• CMake 3.6.3 or later (cmake.org)
• Ninja (ninja-build.org)
• Python 2.7 and 3.4 or later (python.org)
• pandas (pandas.pydata.org)
• Git 2.5 or later (git-scm.com)
• OpenSSH client (openssh.com)

A.4 Installation
No installation required.

A.5 Experiment Workflow
The script cgo.py provided in the master branch of the cgo18 repos-
itory performs the check-out of LLVM, compilation, benchmark
execution and evaluation of the measurements. To run, execute:
$ cd cgo18
$ python3 ./cgo.py 2>&1 | tee log.txt

This process may take around 21 hours to execute and consumes
about 7 GB of disk space. The script prints results in-between other
output, so the log.txt might be helpful.

A.6 Evaluation and Expected Result
The cgo.py script will print the following information to the con-
sole:

• Comparison of the obtained results to our results (“leone”).
• Number of transformations as in Table 1.
• Number of scalar dependencies and post-scheduling trans-
formations as in Table 2.

• Speed-ups as in Figure 8.

A.7 Experiment Customization
The cgo.py script calls two other scripts to compile and run the
benchmarks (gittool.py) and extract the results (execcmp.py).
These commands can also be invoked manually.

Each experiment is described by a branch in the repository with
a line starting with Exec: describing the experiment to execute.
The predefined experiments are shown in Table 3.

An experiment can be modified by changing the Exec: in the
commit message of the branches latest commit. We recommend
creating a new branch for each new experiment. The available
options can be seen using:
$ python3 ./gittool.py runtest --help

The source code of Polly, and the script being executed
(run-test-suite.py) are as well part of the commit, such that
these can be modified as well., e.g. to test modifications to the
compiler that are not exposed via a command-line switch.

github.com/Meinersbur/test-suite/tree/cgo18/Performance
github.com/Meinersbur/test-suite/tree/cgo18/Performance
https://github.com/Meinersbur/cgo18
https://github.com/Meinersbur/cgo18
llvm.org/docs/GettingStarted.html#hardware
llvm.org/docs/GettingStarted.html#software
cmake.org
ninja-build.org
python.org
pandas.pydata.org
git-scm.com
openssh.com

CGO’18, February 24–28, 2018, Vienna, Austria Michael Kruse and Tobias Grosser

Table 4. Hashes (first 6 digits) to the commits describing an
experiment and the hashes resulting from the execution on
Monte Leone.

Branch Experiment “leone”

A10_nopolly 88faaff 98fafc2
A20_polly 905f739 895c01f
A30_polly_early 9274722 a7d8e2d
A40_polly_late 27c0354 3cd76a7
A50_polly_early_delicm fbf19b5 1830678
master 87eb3a

The experiment of the currently checked-out branch is executed
using:
$ python3 ./gittool.py execjob

This will execute the command in the Exec: line, then commit the
result to a new branch that is prefixed with the host machine’s
hostname.

To extract measurements, the script execcmp.py can read the
results from a result branch. For instance, the command
$./execcmp.py leone_A10_nopolly

prints the execution time of each benchmark of
experiment “A10_nopolly” executed on the machine
“leone” (The machine used for our evaluations,
http://www.cscs.ch/computers/monte_leone/index.html). The
command
$./execcmp.py leone_A10_nopolly vs leone_A20_polly

compares the execution times of the benchmarks with and woutput
Polly.

More details about the experiment execution system can be found
in the README.md in the master branch of the cgo18 repository. The
system also includes a command to create new experiments from
scratch and a buildbot component that queues and executes jobs
but are not necessary to reproduce the results.

A.8 Notes
The git sha1 hashes allow to uniquely identify each experiment
and benchmark result. The data for this paper were taken from
experiments with the hashes shown in Table 4.

Acknowledgments
The authors would like to thank Johannes Doerfert for his sugges-
tions, ARM for support in the context of Polly Labs, and the LLVM
community for providing a research environment.

References
[1] Annanay Agarwal. 2017. Enable Polyhedral Optimizations in XLA

through LLVM/Polly. Google Summer of Code 2017 final report. (2017).
http://pollylabs.org/2017/08/29/GSoC-final-reports.html

[2] Randy Allen and Ken Kennedy. 1987. Automatic Translation of
FORTRAN Programs to Vector Form. Transactions on Program-
ming Languages and Systems (TOPLAS) 9, 4 (Oct. 1987), 491–542.
https://doi.org/10.1145/29873.29875

[3] Riyadh Baghdadi, Albert Cohen, Sven Verdoolaege, and Konrad Tri-
funović. 2013. Improved Loop Tiling Based on the Removal of Spurious

False Dependences. Transactions on Architecture and Code Optimization
(TACO) 9, 4, Article 52 (Jan. 2013), 52:1–52:26 pages.

[4] Vinayaka Bandishti, Irshad Pananilath, and Uday Bondhugula. 2012.
Tiling Stencil Computations to Maximize Parallelism. In International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC). IEEE, 1–11.

[5] Muthu Baskaran, Jj Ramanujam, and P Sadayappan. 2010. Automatic
C-to-CUDA code generation for affine programs. In Compiler Con-
struction. Springer, 244–263.

[6] Somashekaracharya G. Bhaskaracharya, Uday Bondhugula, and Albert
Cohen. 2016. Automatic Storage Optimization for Arrays. Transactions
on Architecture and Code Optimization (TACO) 38, 3, Article 11 (April
2016), 11:1–11:23 pages.

[7] Somashekaracharya G. Bhaskaracharya, Uday Bondhugula, and Albert
Cohen. 2016. SMO: An Integrated Approach to Intra-Array and Inter-
Array Storage Optimization. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’16). ACM, New York, NY, USA, 526–538.

[8] Uday Bondhugula, Oktay Gunluk, Sanjeeb Dash, and Lakshmi-
narayanan Renganarayanan. 2010. A Model for Fusion and Code
Motion in an Automatic Parallelizing Compiler. In Proceedings of the
19th International Conference on Parallel Architectures and Compilation
Techniques (PACT ’10). ACM, 343–352.

[9] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayap-
pan. 2008. A Practical Automatic Polyhedral Parallelizer and Locality
Optimizer. SIGPLAN Notices 43, 6, 101–113. http://pluto-compiler.
sourceforge.net

[10] Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke,
Martin E. Hopkins, and Peter W. Markstein. 1981. Register Allocation
via Coloring. Computer Languages 6, 1 (1981), 47–57.

[11] Alain Darte, Alexandre Isoard, and Tomofumi Yuki. 2016. Extended
Lattice-Based Memory Allocation. In Proceedings of the 25th Interna-
tional Conference on Compiler Construction (CC 2016). ACM, New York,
NY, USA, 218–228.

[12] Paul Feautrier. 1992. Some Efficient Solutions to the Affine Scheduling
Problem – Part I. One-dimensional Time. International Journal of
Parallel Programming 21, 6 (Oct. 1992), 313–347.

[13] Paul Feautrier. 1992. Some Efficient Solutions to the Affine Scheduling
Problem – Part II. Multidimensional Time. International Journal of
Parallel Programming 21, 6 (Dec. 1992), 389–420.

[14] Paul Feautrier. 2014. Array Expansion. In International Conference on
Supercomputing 25th Anniversary Volume (SC ’14). ACM, New York,
NY, USA, 99–111.

[15] Tobias Grosser, Armin Grösslinger, and Christian Lengauer. 2012. Polly
– Performing Polyhedral Optimizations on a Low-Level Intermediate
Representation. Parallel Processing Letters 22, 04 (2012). http://polly.
llvm.org

[16] Kathleen Knobe and Vivek Sarkar. 1998. Array SSA Form and Its Use
in Parallelization. In Proceedings of the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’98). ACM,
New York, NY, USA, 107–120. https://doi.org/10.1145/268946.268956

[17] Mathias Koch and JoergWalter. 2017. Boost uBLAS. (7 Sept. 2017). http:
//www.boost.org/doc/libs/1_65_1/libs/numeric/ublas/doc/index.html

[18] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe. 1981.
Dependence Graphs and Compiler Optimizations. In Proceedings of the
8th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’81). ACM, New York, NY, USA, 207–218. https:
//doi.org/10.1145/567532.567555

[19] Vincent Lefebvre and Paul Feautrier. 1998. Automatic storage man-
agement for parallel programs. Parallel Comput. 24, 3 (1998), 649 –
671.

[20] Zhiyuan Li. 1992. Array Privatization: A Loop Transformation for
Parallel Execution. Technical Report 9226. Univ. of Minnesota.

http://www.cscs.ch/computers/monte_leone/index.html
http://pollylabs.org/2017/08/29/GSoC-final-reports.html
https://doi.org/10.1145/29873.29875
http://pluto-compiler.sourceforge.net
http://pluto-compiler.sourceforge.net
http://polly.llvm.org
http://polly.llvm.org
https://doi.org/10.1145/268946.268956
http://www.boost.org/doc/libs/1_65_1/libs/numeric/ublas/doc/index.html
http://www.boost.org/doc/libs/1_65_1/libs/numeric/ublas/doc/index.html
https://doi.org/10.1145/567532.567555
https://doi.org/10.1145/567532.567555

DeLICM: Scalar Dependence Removal at Zero Memory Cost CGO’18, February 24–28, 2018, Vienna, Austria

[21] Sanyam Mehta and Pen-Chung Yew. 2016. Variable Liberalization.
Transactions on Architecture and Code Optimization (TACO) 13, 3, Arti-
cle 23 (Aug. 2016), 23:1–23:25 pages.

[22] Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. 2015. Poly-
mage: Automatic Optimization for Image Processing Pipelines. In
SIGPLAN Notices, Vol. 50. ACM, 429–443.

[23] Irshad Pananilath, Aravind Acharya, Vinay Vasista, and Uday Bond-
hugula. 2015. An Optimizing Code Generator for a Class of Lattice-
Boltzmann Computations. Transactions on Architecture and Code Opti-
mization (TACO) 12, 2 (2015), 14.

[24] Louis-Noel Pouchet and Tomofumi Yuki. 2016. Polybench 4.2.1 beta.
(2016). Retrieved 2017-07-07 from https://sourceforge.net/projects/
polybench

[25] Fabien Quilleré and Sanjay Rajopadhye. 2000. Optimizing Memory
Usage in the Polyhedral Model. Transactions on Architecture and Code
Optimization (TACO) 22, 5 (Sept. 2000), 773–815.

[26] Konrad Trifunovic, Albert Cohen, David Edelsohn, Feng Li, Tobias
Grosser, Harsha Jagasia, Razya Ladelsky, Sebastian Pop, Jan Sjödin,
and Ramakrishna Upadrasta. 2010. Graphite Two Years After: First
Lessons learned from Real-World Polyhedral Compilation. In GCC
Research Opportunities Workshop (GROW ’10).

[27] Konrad Trifunovic, Albert Cohen, Ladelski Razya, and Feng Li. 2011.
Elimination of Memory-Based Dependences for Loop-Nest Optimiza-
tion and Parallelization. In 3rdWorkshop on GCCResearch Opportunities
(GROW ’11). Chamonix, France.

[28] Peter Vanbroekhoven, Gerda Janssens, Maurice Bruynooghe, and
Francky Catthoor. 2005. Transformation to Dynamic Single Assign-
ment Using a Simple Data Flow Analysis. In Programming Languages

and Systems: Third Asian Symposium, APLAS 2005, Tsukuba, Japan,
November 2-5, 2005. Proceedings, Kwangkeun Yi (Ed.). Springer, Berlin,
Heidelberg, 330–346.

[29] Nicolas Vasilache, Benoit Meister, Albert Hartono, Muthu Baskaran,
David Wohlford, and Richard Lethin. 2012. Trading Off Memory For
Parallelism Quality. In International Workshop on Polyhedral Compila-
tion Techniques (IMPACT ’12).

[30] Anand Venkat, Mary Hall, and Michelle Strout. 2015. Loop and Data
Transformations for Sparse Matrix Code. In SIGPLAN Notices, Vol. 50.
ACM, 521–532.

[31] Sven Verdoolaege. 2016. Presburger Formulas and Polyhedral Compila-
tion. Technical Report. https://lirias.kuleuven.be/handle/123456789/
523109

[32] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, Jose Igna-
cio Gomez, Christian Tenllado, and Francky Catthoor. 2013. Polyhedral
Parallel Code Generation for CUDA. Transactions on Architecture and
Code Optimization (TACO) 9, 4 (2013), 54.

[33] Sven Verdoolaege and Albert Cohen. 2016. Live Range Reordering. In
International Workshop on Polyhedral Compilation Techniques (IMPACT
’16). Prague, Czech Republic.

[34] Doran K. Wilde and Sanjay Rajopadhye. 1993. Allocating Memory
Arrays for Polyhedra. Research Report RR-2059. Inria.

https://sourceforge.net/projects/polybench
https://sourceforge.net/projects/polybench
https://lirias.kuleuven.be/handle/123456789/523109
https://lirias.kuleuven.be/handle/123456789/523109

	Abstract
	1 Introduction
	2 Value Coalescing
	2.1 Value Coalescing by Example
	2.2 The Greedy Scalar Mapping Algorithm

	3 Operand Tree Forwarding
	4 Implementation
	5 Evaluation
	5.1 Static Evaluation
	5.2 Performance Evaluation

	6 Related Work
	7 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-List (Meta-Information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Result
	A.7 Experiment Customization
	A.8 Notes

	Acknowledgments
	References

