
Simple, Accurate, Analytical Time Modeling and Optimal
Tile Size Selection for GPGPU Stencils

Nirmal Prajapati
Colorado State University

Fort Collins, CO, USA
nirmal171@gmail.com

Waruna Ranasinghe
Colorado State University

Fort Collins, CO, USA
warunapww@gmail.com

Sanjay Rajopadhye
Colorado State University

Fort Collins, CO, USA
svr@cs.colostate.edu

Rumen Andonov
IRISA/INRIA

Rennes, France
Rumen.Andonov@irisa.fr

Hristo Djidjev
Los Alamos National Lab.

Los Alamos, NM, USA
djidjev@lanl.gov

Tobias Grosser
Dep. of Computer Science
ETH Zurich, Switzerland

tobias.grosser@inf.ethz.ch

ABSTRACT
Stencil computations are an important class of compute and
data intensive programs that occur widely in scientific and
engineering applications. A number of tools use sophisti-
cated tiling, parallelization, and memory mapping strate-
gies, and generate code that relies on vendor-supplied com-
pilers. This code has a number of parameters, such as tile
sizes, that are then tuned via empirical exploration.

We develop a model that guides such a choice. Our model
is a simple set of analytical functions that predict the execu-
tion time of the generated code. It is deliberately optimistic,
since we are targeting modeling and parameter selections
yielding highly tuned codes.

We experimentally validate the model on a number of 2D
and 3D stencil codes, and show that the root mean square
error in the execution time is less than 10% for the subset
of the codes that achieve performance within 20% of the
best. Furthermore, based on using our model, we are able
to predict tile sizes that achieve a further improvement of
9% on average.

1. INTRODUCTION
As we move to address the challenges of exascale com-

puting, one approach that has shown promise is domain
specificity: the adaptation of application, compilation, par-
allelization, and optimization strategies to narrower classes
of domains. An important representative of such a domain
is called Stencil Computations, and includes a class of typ-
ically compute bound parts of many applications such as
partial differential equation (PDE) solvers, numerical simu-
lations in domains like oceanography, aerospace, climate and
weather modeling, computational physics, materials model-
ing, simulations of fluids, and signal and image-processing
algorithms. One of the thirteen Berkeley dwarfs/motifs [2],

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PPoPP ’17, February 04-08, 2017, Austin, TX, USA
c© 2017 ACM. ISBN 978-1-4503-4493-7/17/02. . . $15.00

DOI: http://dx.doi.org/10.1145/3018743.3018744

is “structured mesh computations,” which are nothing but
stencils. Many dynamic programming algorithms also ex-
hibit a similar dependence pattern. The importance of sten-
cils has been noted by a number of researchers, indicated by
the recent surge of research projects and publications on this
topic, ranging from optimization methods for implement-
ing such computations on a range of target architectures,
to Domain Specific Languages (DSLs) and compilation sys-
tems for stencils [11, 12, 13, 31, 30, 32, 34, 38, 42, 51, 50, 53,
48]. Workshops and conferences devoted exclusively to sten-
cil acceleration have recently emerged. Stencils belong to a
class of programs called uniform dependence computations,
which are themselves a proper subset of “affine loop pro-
grams.” Such programs can be analyzed and parallelized us-
ing a powerful methodology called the polyhedral model [46,
44, 35, 15, 16, 17, 10, 6].

A second aspect of domain specificity is reflected in the
emergence of specialized architectures, called accelerators,
for executing compute intensive parts of many computa-
tions. They include GPGPU, general purpose computing on
graphics processing units (GPUs), and other co-processors
(Intel Xeon Phi, Knight’s Landing, etc.). Initially they were
“special purpose,” limited to highly optimized image render-
ing libraries (aka. graphics processing). Later, users realized
that they could be used for other computations. Eventually,
the emergence of tools like CUDA and OpenCL enabled gen-
eral purpose parallel programming on GPUs.

Exploiting the specificity of the applications and the speci-
ficity of target architectures leads to domain-specific tools to
map high level programs to highly tuned and optimized im-
plementations on the target architecture. Many such tools,
both academic research prototypes and productions systems,
are widely available. One example is PPCG, developed by
the group at ENS, Paris [54]. PPCG includes a module that
targets GPUs and incorporates a sophisticated, compiler de-
veloped by Grosser et al. [22]. We call it the HHC compiler
because it employs a state-of-the-art tiling strategy called
hybrid hexagonal classic tiling.

A number of parameters can be specified as inputs/flags
to the HHC compiler, e.g., the tile sizes, and the number of
threads in each dimension. These parameters have a tremen-
dous influence on the performance of the code. An impor-
tant element of such tools is a step called auto tuning : em-
pirical evaluation of the actual performance of a, hopefully
small, set of code instances for a range of mapping param-

http://dx.doi.org/10.1145/3018743.3018744

eters. This enables the system to choose these parameters
optimally for actual “production runs” on real data/inputs.

Modern architectures are extremely complicated, with so-
phisticated hardware features that interact in unpredictable
ways, especially since the latency of operations is stochas-
tic due to the deep memory hierarchy. It is widely believed
that because of this, auto tuning is unavoidable in order to
obtain good performance. In this paper, we make the case
that domain specificity enables us to develop good analytical
models to predict the performance of specific codes on spe-
cific target architectures. This allows a significant reduction
in the autotuning search space. Our contributions are:

• Contribution 1. We develop a simple analytical model
to predict the execution time of a tiled stencil program
and apply it to codes generated by the HHC compiler.
It is deliberately optimistic, ignores the effect of some
parameters, and is an analytic function of

– program, machine, and compiler parameters that
are easily available statically, and

– one stencil-specific parameter, obtained by run-
ning a micro-benchmark derived from the loop
body.

• Contribution 2. Although our model may not accu-
rately predict the performance for all tile size combi-
nations, it is very accurate for the ones that matter,
i.e., those that give top performance. To show this, we
generated more than 60,000 programs for

– two modern target platforms (NVIDIA GTX 980
and Titan X),

– four 2D and two 3D stencil codes (Jacobi, Heat,
Laplacian, and Gradient)

– over a range of ten input data sizes, and

– for each such platform-stencil-size combination,
a wide range of tile sizes and thread counts (the
HHC compiler inputs).

As we expected, the RMS error over the entire data set
was—”seemingly disappointingly”—over 100%. How-
ever, our model is very accurate where it matters.
When we restricted ourselves to codes whose perfor-
mance is within 20% of the best, the RMSE is less
than 10%.1

• Contribution 3. To test the predictive abilities of
the model, we evaluated the model over the entire fea-
sible space (for each platform-stencil-size combination)
and obtained the tile sizes that were within 10% of
the best predicted execution time. There were less
than 200 such points. We called the HHC compiler
with these tile sizes and were able to observe among
this set a performance improvement of 9% on average
(max improvement was 17%). We also observed that
the “conventional wisdom” to choosing tile sizes so as
to maximize shared-memory footprint is not always
optimal.

1The restriction to the better performing subset was ex-
actly our motivation. We designed the model to help pre-
dict/explore data points that would give good performance.
It is also why we made optimistic assumptions in developing
the model.

The remainder of this paper is organized as follows. After
a discussion of related work and backend (Sections 2 and 3)
we describe the domain specific parallelization used for sten-
cils and, in particular, the strategies used by the HHC com-
piler. Then, Section 4 develops our analytical model. Sec-
tion 5 describes our experimental results on validating the
model on a baseline set of tile sizes. Section 6 illustrates
the predictive power of the model. Finally, we discuss our
results, describe ongoing and future work, and conclude in
Sections 7 and 8.

2. RELATED WORK
At the algorithmic level, most stencil applications are com-

pute bound in the sense that the ratio of the total num-
ber of operations to the total number of memory locations
touched can always be made “sufficiently large” because it
is an asymptotically increasing value. We may expect that
such codes can be optimized to achieve very high perfor-
mance relative to machine peak. However, naive implemen-
tations turn out to be memory-bound. Therefore, many
authors seek to exploit data locality for these programs [29,
43, 5]. One successful technique is called time tiling [56, 6,
58, 59, 19, 20, 52, 5], an advanced form of loop tiling [57,
56, 60]. Time tiling first partitions the whole computation
space into tiles extending in all dimensions, and then option-
ally executes these tiles in a so called “45 degree wavefront”
fashion. We assume, like most of the work in the literature,
that dense stencil programs are compute bound after time
tiling. However, due to the intricate structure of time tiled
code, writing it by hand is challenging. Automatic code
generation, is an attractive solution, and has been an active
research topic.

There has been much work on time modeling and perfor-
mance optimization. For stencil graphs, which are directed
acyclic graphs (DAGs) of non-iterated stencil kernels, var-
ious DSLs compilers have been proposed. Halide [45] and
Stella [24] are two DSLs from the context of image pro-
cessing and weather modeling that separate the specifica-
tion of the stencil computation from the execution schedule,
which allows for the specification of platform specific exe-
cution strategies derived either by platform experts or au-
tomatic tuning. Both DSLs support various hardware tar-
gets, including CPUs and GPUs. Polymage [39] also pro-
vides a stencil graph DSL—this time for CPUs only—but
pairs it with an analytical performance model for the auto-
matic computation of optimal tile size and fusion choices.
MODESTO [23] proposes an analytical performance model
in the context of Stella, for multiple cache levels and fusion
strategies, for both GPUs and CPUs.

For iterative stencils a large set of optimizing code gener-
ation strategies have been proposed. Ahmed et. al [1] de-
scribe time tiling as part of their work on synthesizing trans-
formations for imperfectly nested loops. Li and Song [33]
consider fusion and skewing in a unified framework and de-
rive minimal skewing factors for exploiting data reuse along
the time dimension of an iterative stencil. Both works do
not consider GPU performance. Patus [9] provides an auto-
tuning environment for stencil computations which can tar-
get CPU and GPU hardware. It does not use software man-
aged memories and also does not consider any time tiling
strategies. Pochoir [53] is a CPU-only code generator for
stencil computations that exploits reuse along the time di-
mension by recursively dividing the computation in trape-

zoids. Diamond tiling [3], Hybrid-hexagonal tiling [22], and
Overtile [26] are all tiling strategies that allow to exploit
reuse along the time dimension, while ensuring a balanced
amount of coarse-grained parallelism throughout the com-
putation. While the former has only been evaluated on
CPU systems, the last two tiling schemes have been im-
plemented to target GPUs. Overtile uses redundant compu-
tation whereas hybrid-hexagonal tiling uses hexagonal tiles
to avoid redundant computation and the increased shared
memory that would otherwise be required to store tempo-
rary values. Another time tiling strategy has been proposed
with 3.5D blocking by Nguyen et. al [41], who manually
implemented kernels that use two dimensional space tiling
plus streaming along one space dimension with tiling along
the time dimension to target both CPUs and GPUs. A
slightly orthogonal stencil optimization has been proposed
by Henretty et. al [25], who use data-layout transformations
to avoid redundant non-aligned vector loads on CPU plat-
forms. All of the previously discussed frameworks either
come with their own auto-tuning framework or require auto
tuning to derive optimal tile sizes.

For stencil GPU code generation strategies that use redun-
dant computations in combination with ghost zones an ana-
lytical performance model has been proposed [37] that allows
to automatically derive “optimal” code generation parame-
ters. Yotov et. al [61] showed already more than ten years
ago that an analytical performance model for matrix multi-
plication kernels allows to generate code that is performance-
wise competitive to empirically tuned code generated by AT-
LAS [55], but at this point no stencil computations have
been considered. Shirako et al. [49] use cache models to de-
rive lower and upper bounds on cache traffic, which they
use to bound the search space of empirical tile-size tuning.
Their work does not consider any GPU specific properties,
such as shared memory sizes and their impact on the avail-
able parallelism.

In contrast to tools for tuning, Hong and Kim [27] present
a precise GPU performance model which shares many of
the GPU parameters we use. It is highly accurate, but low
level, and requires analyzing the PTX assembly code. It is
therefore unsuitable for use in a compiler.

3. STENCILS AND THEIR PARALLELIZA-
TION

We now describe the class of computations we tackle, the
overall parallelization strategy, and how the HHC compiler
implements it.

In codes that implement dense iterative stencils, values
of array elements are updated iteratively at every time step
using the values of some of their neighbors from previous
time steps2 according to a fixed pattern. We consider sten-
cil codes of the following kind. Let S = {(i1, . . . , ik) | 1 ≤
ij ≤ Sj , for j = 1, . . . , k} be a k-dimensional space index
set and T = {1, . . . , T} be a time index set. Then, given a
set N defining the “neighborhood” of any point in terms of
a pattern of relative coordinates and a coefficient wa associ-
ated with each element a ∈ N , a (convolutional) stencil code
defines an iterative evaluation of the following weighted sum

2Stencils where some updates may use values from the cur-
rent time step (called Gauss-Seidel stencils) are not included
in the definition, as the HHC compiler does not consider
these.

At(s) =
(∑

a∈N

wa ∗At−1(s+ a)
)

+ c , (1)

s ∈ S, t ∈ T , where we assume that appropriate values are
given for the “initial value” (when t = 0) and the “boundary
values” (when the points s + a fall outside S). Stencils are
usually implemented as nested loops with the loop body
evaluating the rhs of (1) and storing it in a data array.

Efficient parallelization of stencils on GPUs requires care-
ful consideration of at least two factors at two separate lev-
els, and there is significant interplay between them: par-
allelism and data locality/reuse, at the fine grain (threads,
synchronization, shared and/or scratchpad memory) and at
the coarse grain (thread blocks, and global memory). Tiling
is a widely used technique that has been developed to man-
age this, and it is applied at multiple levels and to both
data and iterations of the loop. In a typical implementation,
data, initially stored on the CPU, is first transferred to the
GPU, subsequently a sequence of kernel calls is issued on
the CPU to perform the computation on the GPU-resident,
and finally the result is moved back to the CPU. For ease of
explanation, it is convenient to view the entire stencil com-
putation as defined by its iteration space: the set of legal
values of the space and time coordinates.

3.1 Hybrid Hexagonal/Classical Tiling
The HHC compiler [22], which we are using, implements

a hybrid of two strategies: hexagonal tiling of the outer two
loops/dimensions, and the classic time skewing of the re-
maining (inner/space) dimensions. A 1D stencil is thus, a
special case (the iteration space is 2D, and only hexagonal
tiling is applicable). For more than two nested loops, it tiles
the inner loops using the classic time skewing approach.

Therefore, we first explain hexagonal tiling. The itera-
tion space, a S × T rectangle, is partitioned into a set of
“staggered” hexagons, as shown in Figure 1.a, and we view
a “row of hexagons” as those whose (leftmost) corners have
the same value of t. Each row is independent, accesses dis-
tinct data, and can, hence, be executed in a single kernel
call. The main program is just a sequence of such kernel
calls.

Now consider a 3-D iteration space (see Figure 2) where
each hexagon on the outer two (t-k) dimensions now be-
comes a “prism” extending along the i dimension. Stencil
dependences precludes directly blocking this prism. Rather,
time-skewing has to be applied (illustrated by the oblique
hexagonal faces above). After this, the HHC compiler gen-
erates code that executes the tiles in the prism via a se-
quential loop—executed within a single kernel call—whose
body is the execution of a tile, the outer loop structure re-
mains the same. The idea is extended to higher dimensions,
where the prisms become “slabs” and “hyper-slabs” and the
sequential loop iterating over tiles becomes a nested loop.

3.2 Details of the HHC Compiler
HHC generates highly tuned code for specific stencils,

problem sizes, and tile size parameters, taking advantage
of properties of the “hybrid-hexagonal schedule”. The HHC
compiler is one module within a complete polyhedral tool
suite, PPCG, developed by the group at ENS, Paris [54]. In-
dependently of the tiling scheme, PPCG automatically sim-
plifies generated loop bounds and index expressions, taking
into account problem sizes and tile-size parameters.

T

tT

StS wtile

a

T

tT

StS

wtile

b
Figure 1: Hexagonal tiling for 1D stencils: the S × T itera-
tion space is partitioned into hexagons (left). The Jacobi 1D
inter and intra-tile dependencies are illustrated as blue and
black arrows, respectively. There are two kinds of “tile rows”
colored green and yellow. The tiles in each row are indepen-
dent, and can executed in a single GPU kernel call. A single
tile (right) and its I/O (red: iterations reading data from
global memory; blue: iterations writing to global memory).

S2 S1

t	
 -.T	

Figure 2: Hybrid-hexagonal tiling for 2D stencils.

When generating HHC tiled code, the effectiveness of PPCG’s
specialization can be largely improved by unrolling the global-
to-shared memory copy code as well as the per-tile compute
code. When unrolling both, all control flow within a tile
is eliminated such that only a sequence of (possibly predi-
cated) instructions remains to be executed by each thread.
When using HHC tiling, it is also possible to take advantage
of data-reuse between two tiles that are run in sequence by
the same threadblock. In this situation, a subset of the
data that is loaded by each tile is already in shared memory
and does not need to be loaded again. However, as PPCG
derives for each tile an optimal data-mapping strategy, the
reusable data is not always placed such that it can be imme-
diately reused between tiles. To still exploit this property,
PPCG provides two different options. Option 1) enforces
a shared (commonly less optimal) memory placement strat-
egy. Option 2) moves reusable data within shared memory
to account for different data placement between tiles before
loading the remaining data from global memory.

4. EXECUTION TIME MODEL

Name Type Description

Si EP i-th space dimension
T EP time dimension

tSi
ES tile size along the i-th space dimension

tT ES tile size along time dimension
nthr,i ES number of threads per threadblock in the i-th

dimension/loop

nSM EH number of SMs in the device
nV EH number of vector units per SM
RSM EH number of registers per SM
MSM EH size of shared memory per SM
MTBSM EH max threadblocks per SM
L EH time per word of global memory access
τsync EH time for a single synchronization
Tsync EH time for a host-GPU synchronization

Nw CS number of wavefronts
mi CS input memory footprint of a tile

(amount of data read from global memory)
mo CS output memory footprint of a tile

(amount of data written to global memory)
m′ CS time for global↔shared data transfer for a tile
c CS time to perform the computation in a tile

(collectively by all the threads)
k CS “hyper-threading” factor (threadblocks per SM)
Ttile(k) CS time to compute a tile

(accounting for k-way “hyper-threading”)
w(i) CS width of the i-th wavefront

(number of threadblocks in the i-th kernel call)
wtile CS width of (number of iterations in) a tile
Rtile CS number of registers needed per tile
Mtile CS shared memory needed per tile
Mio CS I/O volume per tile (global↔shared)

Citer CSH (optimized) execution time of one iteration

Talg C total execution time of stencil
Texec observed execution time (not a model parameter)

Table 1: The execution time model parameters. E/C
denote Elementary/Composite, and S/H/P denote Soft-
ware/Hardware/Problem; Mio is measured in 4-byte words.

We now develop a model for the execution time of a sten-
cil computation on the GPU as a function of software, hard-
ware, and problem parameters. These parameters are shown
in Table 1. Some of these have to be measured or are cho-
sen by the compiler, we call them elementary, while oth-
ers, called composite, are functions of elementary and other
composite parameters. In addition to this distinction, we
also divide them into three classes, hardware, software, and
problem, depending on their origin. Hardware parameters
are specific to the machine. Software parameters such as
tile size, number of threads per tile, etc., are determined by
the user or the compiler. And the problem parameters are
determined by the type of stencil, the computation in the
loop body, number of variables, nature of memory accesses,
etc.

4.1 Model for Hexagonal Tiling
We first derive the execution time for an 1D stencil, Ja-

cobi 1D (for which we drop the subscript on S1, using just
S). Later we extend the model to higher dimensions.

The T×S rectangular iteration space is tiled into hexagons
with a base of size tS and a height of size tT (see Figure 1.a).
In the following, we suppose that tT is even, since the HHT
compiler only supports this case.

The total execution time for the tiled code can be evalu-
ated by adding the time spent by the GPU in each kernel
call and the total synchronization time spent between kernel

calls

Talg =

Nw∑
i=1

(⌈
1

nSM

⌈
w(i)

k

⌉⌉
Ttile(k) + Tsync

)
. (2)

The ith kernel computes the tiles from the ith wavefront.
The ith wavefront consists of the tiles that intersect the ith

red dashed horizontal line. Note that they contain either
yellow tiles only (for odd wavefronts indexed from one) or
green tiles only (for even wavefront indices). Let us esti-
mate the number n0 of even-indexed wavefronts (colored in
green). Since the height of each tile is tT and the height
of the iteration space is T , then n0 = dT/tT e. For esti-
mating the total number of wavefronts, we note that for any
even-indexed wavefront (say j) we can associate exactly one,
possibly partial, odd-indexed wavefront—the one whose in-
dex is j − 1. Moreover, depending on the relative values of
T and tT , the last wavefront may be even (green) and num-
bered 2n0, or odd (yellow) and numbered 2n0 + 1. Which
case holds depends on the relationship between T−bT/tT ctT
and tT /2. More precisely, the total number of wavefronts is
equal to

Nw = 2

⌈
T

tT

⌉
+ ε ≈ 2

⌈
T

tT

⌉
, (3)

where ε = 0 if 0 < T − bT/tT ctT ≤ tT /2, otherwise ε = 1.
To estimate the tile width, wtile, we decompose each hexagon

into a rectangle of size tS × tT and two right isosceles trian-
gles with a hypotenuse tT , each of which spans tT /2 columns
(see Figure 1.b). Adding these, we get

wtile = tS + tT − 2. (4)

Furthermore, the distance between two consecutive tiles
in a wavefront, called pitch, can be derived as wtile+tS +2 =
2tS+tT . Now, there may be one more or less tile in alternate
wavefronts, so the number of tiles in a wavefront (i.e., the
width of a wavefront) is

w(i) =

⌈
S

2tS + tT

⌉
+ ε′ ≈

⌈
S

2tS + tT

⌉
, (5)

where ε′ is 1 or 0, and is ignored. Since w(i) is actually
independent of i, the summation in (2) can be simplified to
yield

Talg = NwTtile(k)

⌈
1

nSM

⌈w
k

⌉⌉
+Nw Tsync . (6)

4.1.1 Execution Time of a Tile
In the case of hexagonal tiling, the amount of data read

from global memory is the sum of the bottom base (tS) plus
the data needed to compute its two adjacent oblique sides.
Each of these oblique sides has tT /2 points, and there are
two such lines of points that need data from two oblique
lines (shown in red in Figure 1.b). Collectively, this data
comes from two other (blue) line segments in a neighboring
south-east or south-west tile. The blue points thus depict
the input footprint of the tile, mi, which can be shown to be
tS +4tT /2 = tS +2tT . In the case of Jacobi 1D, this amount
also equals the output tile memory footprint mo. The later
is depicted in blue (north-oriented tile’s facets) in Figure 1.b.
Therefore, for the total input/output tile memory footprint
we obtain

mio = mi +mo = 2(tS + 2tT). (7)

To obtain m′ we multiply mio by L and add twice the syn-
chronization time. Hence

m′ = mioL+ 2τsync = 2(tS + 2tT)L+ 2τsync. (8)

Finally, for these hexagonal tiles, Mtile = 2(wtile + 2) =
2(tS +tT). To determine Ttile we consider two cases: a single
tile per SM (no hyperthreading) and multiple tiles per SM
(hyperthreading).

4.1.2 No Hyperthreading
In this case k = 1 and only one tile is executed on each SM

at a time. To compute a tile, a read operation, a compute
operation, and a write operation are performed in sequence
with synchronizations in between them. We assume that
both read and write operations take an equal amount of
time.

The iteration space dependences indicate that the com-
putations in a tile can be done in parallel in each row, and
in a sequential manner between rows from bottom to top.
Since Citer denotes the computation time per iteration and,
considering the shape of each hexagon, we find that the com-
putation time of a tile is given by

c = 2

wtile∑
x=tS ,step=2

(⌈
x

nV

⌉
Citer + τsync

)

= 2Citer

wtile∑
x=tS ,step=2

⌈
x

nV

⌉
+ tT τsync.

(9)

Combining (8) and (9), the total time to process a tile is

Ttile = m′ + c. (10)

When nV ≥ wtile, each tile row can be computed in
Citer time and the computation time c of a tile is just c =
tT (Citer+τsync). However, note that this is a very inefficient
use of the fine grain resources of the SMs, and we expect that
for the optimal solution, nV � wtile.

4.1.3 Hyperthreading
Consider the case k > 1, where more than one tile is ex-

ecuted on each SM at a time. The value of k, the number
of tiles per SM, depends on the available resources, shared
memory and registers in a SM as well as the resources con-
sumed by a tile (thread block), and is bounded as follows:

1 < k ≤ min

(⌊
RSM

Rtile

⌋
,

⌊
MSM

Mtile

⌋)
. (11)

Read/write operations can now overlap with computa-
tions. Therefore, reading of the second tile input data can be
synchronized and overlapped with the first tile computation.
However, the very first read and the very last write cannot
overlap with anything. Thus the execution time is the sum
of this and the dominant one between (k − 1) read-writes
and computes. The time to compute k tiles is then

Ttile(k) = m′ + c+ (k − 1) max(m′, c). (12)

4.2 Hybrid Hexagonal/Classic Tiling for 2D
Stencils

Here, the outer two loops are tiled with hexagons, and
the inner dimension(s) are tiled using classic time skewing
techniques. We illustrate this for the Jacobi2D stencil.

4.2.1 Total Execution Time of Jacobi 2D
As illustrated in Figure 2, each hexagon from Figure 1

now becomes a“prism”with a hexagonal cross section, whose
length is S2 along the S2-axis. Its data footprint may be too
large for the entire prism to be executed as a single tile, so it
needs to be tiled. To respect the dependences, time skewing
is applied to each prism (notice how the front face is oblique
in the S1-T plane), and then each prism is partitioned using
vertical cuts (other than the front face, all the inter-tile faces
are vertical). A threadblock executes the entire sequence of
tiles in a single kernel call. Let Tprism denote the time that
this takes, and postpone its derivation for now.

The formulæ for the number of wavefronts (Nw), the tile
width (wtile), the width of a wavefront in respect to the
S1-axis (w), as well as the total execution time (Talg), are
identical to the Jacobi 1D case, and are given by equations
3, 4, 5 and 6 respectively, where the parameters S, tS are
replaced by S1 and tS1 while the term Ttile is substituted by
Tprism.

4.2.2 Execution Time of a Tile
Since tiles chosen as above could be very large and in-

convenient for the shared memory size, we need to further
partition them into smaller chunks. In the Jacobi 2D hybrid
approach these are hexagonal (non-orthogonal) sub-prisms
with a length tS2 and bases defined by the normal vector
(1, 0, 1) where time is the first dimension (vertical axis in
Figure 2). The number of these sub-prisms in an entire

prism is
⌈

S2+tT
tS2

⌉
and the dependencies allow to compute

them sequentially from bottom to top (right to left in Fig-
ure 2). We therefore assume from now on that one tile is

computed by a single SM which iterates
⌈

S2+tT
tS2

⌉
times for

a given prism, and at each iteration computes one of the
above sub-prism.

Since the data belonging to the oblique hexagonal faces
are allocated in the local SM memory, the amount of data
to be transferred from global to shared memory is simply
the amount of data as for Jacobi 1D case (7) multiplied by
the tile’s length tS2 . Hence

mi = mo = tS2(tS1 + 2tT). (13)

For the corresponding time we obtain respectively

m
′

= (mi +mo)L+ 2τsync. (14)

The iteration space dependences indicate that the compu-
tations in a tile can be done in parallel in each row, and
in a sequential manner between rows from bottom to top.
We therefore find that the computation time for a non-
boundary/steady state tile is given by

c = 2

wtile∑
x=tS1

,step=2

(⌈
xtS2

nv

⌉
Citer + τsync

)

= 2Citer

wtile∑
x=tS1

,step=2

⌈
xtS2

nv

⌉
+ tT τsync.

(15)

Now, the execution time of an entire prism depends on
whether or not hyper-threading is performed. If we have

a single tile on each SM, Ttile(k) = m
′

+ c. On the other
hand, with hyper-threading enabled, Ttile(k) is dominated

by ζ = max{m
′
, c}, and so,

Tprism(k) =

 k = 1 :
(
m

′
+ c
)⌈

S2+tT
tS2

⌉
k > 1 : m

′
+ kζ

⌈
S2+tT
tS2

⌉
.

(16)

Plugging this into (2) and simplifying we get

Talg = NwTsync +NwTprism

⌈
1

nSM

⌈w
k

⌉⌉
. (17)

Finally, we extend the analysis for the 1D case to deter-
mine mi = mo and Mtile as

mi = tS2(tS1 + 2tT) (18)

Mtile = 2(tS1 + tT + 1)(tS2 + tT + 1). (19)

4.3 Hybrid Hexagonal/Classic Tiling for 3D
stencils

Here, the outer two loops are tiled with hexagons, and
the inner dimension(s) are tiled using classic time skewing
techniques. We illustrate this for the Jacobi 3D stencil.

4.3.1 Total Execution Time of Jacobi 3D
Each hexagon from Figure 1 now becomes an S2 × S3

“slab” with a hexagonal cross section. Its data footprint
is surely too large for the entire slab to be executed as a
single tile, so it needs to be further tiled in the two inner
dimensions. Indeed, even a single dimensional slice out of
this slab, i.e., a 3-dimensional prism, will most likely have
too large a data footprint. To respect the dependences, time
skewing is applied to each slab (notice how the front face is
oblique in the S1-T plane (see Figure 2 that illustrates the
2D case) and then each slice is partitioned using vertical
cuts (other than the front face, all the inter-tile faces are
vertical). A threadblock executes the entire sequence of tiles
in a single kernel call. Let Tslab denote the time that this
takes, and postpone its derivation for now.

The formulæ for the number of wave-fronts (Nw), the tile
width (wtile), the width of a wave-front in the tS1 -axis (w),
are identical to the Jacobi 1D case, and respectively, are

Nw ≈ 2

⌈
T

tT

⌉
(20)

wtile = tS1 + tT − 2, (21)

w ≈
⌈

Ss1

tS1 + tT

⌉
. (22)

The total execution time is hence similar to the one of
Jacobi 1D 6 with the unique difference that the term Ttile is
substitute now by Tslab.

4.3.2 Execution Time of a Slab
Since slabs chosen as above could be very large and incon-

venient for the shared memory size, we need to further par-
tition them into smaller chunks. In the Jacobi 2D hybrid ap-
proach (see Figure 2) these are hexagonal (non-orthogonal)
sub-slabs with a length tS2 and bases defined by the normal
vector (1, 0, 1), where time is the first dimension (vertical
axis). In case of Jacobi 3D the number of these sub-slabs in

an entire slab is

Nsslabs =

⌈(
S2 + tT
tS2

)(
S3 + tT
tS3

)⌉
(23)

and we assume from now on that one slab is computed by a
single SM, which iterates Nsslabs times for a given slab, and
at each iteration computes one of the above sub-slab.

Since data belonging to the oblique hexagonal faces are
allocated in the local SM memory, the amount of data to
be transferred from global to shared memory is simply the
amount of data as for Jacobi 1D case (7) multiplied by the
tile’s length in the S2 and S3 axes. Hence

mi = mo = tS2tS3(tS1 + 2tT). (24)

For the corresponding time we obtain respectively

m′ = (mi +mo)L+ 2τsync. (25)

To obtain the volume of a sub-slab, we multiply the hexagon
area by its length in the S2 and S3 axes and we obtain

Vtile = tS2tS3

tT (wtile + tS1)

2
. (26)

The iteration space dependences indicate that the com-
putations in a tile can be done in parallel in each row, and
in a sequential manner between rows from bottom to top.
We therefore find that the computation time for a non-
boundary/steady state tile is given by

c = 2

wtile∑
x=tS1

,step=2

(⌈
xtS2tS3

nV

⌉
Citer + τsync

)

= 2Citer

wtile∑
x=tS1

,step=2

⌈
xtS2tS3

nV

⌉
+ tT τsync.

(27)

Now, the execution time of an entire slab depends on
whether or not hyper-threading is performed. If we have
a single tile on each SM (i.e. k = 1) we obtain

Tslab(1) = (m′ + c)Nsslabs. (28)

On the other hand, with hyper-threading enabled (i.e. k >
1), Ttile(k) is dominated by max(m′, c), and so,

Tslab(k) = m′ + kmax(m′, c)Nsslabs. (29)

Plugging this into (2) and simplifying yields

Talg = NwTsync +NwTslab(k)

⌈
1

nSM

⌈w
k

⌉⌉
. (30)

All the equations developed here hold true for all stencil
codes generated by HHC compiler. However, the parameter
Citer, which corresponds to computation time of the loop
body, varies with number and type of computations. Again,
the model is not restricted to HHC style codes. It can be
applied to other parallelization strategies. Consider, wave-
front parallel Jacobi1D stencil. The total execution time
is the sum of the times for each wavefront. The time for
each kernel call (or wavefront) is the sum of the time needed
for the SM with maximum number of tiles assigned to it to
finish. Hence, equation 6 holds for wavefront parallel codes.

5. EXPERIMENTAL VALIDATION
To validate the model, we perform a number of exper-

iments on two NVIDIA platforms: GTX 980 and Titan
X. Our benchmarks include four 2D stencils: Jacobi, Heat,
Laplacian and Gradient, all first order stencils. The bench-
marks also include two 3D stencils: Heat and Laplacian. All
2D stencils have two space dimensions and one time dimen-
sion. The two space dimension sizes we explore are 40962

and 81922. For each such size, we explore five problem sizes
in time dimension (T): 1024, 2048, 4096, 8192 and 16384. In
total, we explore 10 different combinations of problem size
parameters. With 4 benchmarks, 10 size combinations, and
2 machines, we have a total of 80 combinations, which we
refer to as 2D stencil experiments. Similarly, all 3D sten-
cils have three space dimensions and one time dimension.
The three space dimension sizes are 3843, 5123 and 6403.
For each such size, we explore five problem sizes in time di-
mension (T): 128, 256, 384, 512 and 640 where T ≤ S. In
total, we explore 12 different combinations of the problem
size parameters. With 2 benchmarks, 12 size combinations,
and 2 machines, we have a total of 48 combinations, which
we refer to as 3D stencil experiments.

5.1 Baseline Experiments
We maximize the memory footprint of the tile subject

to capacity constraints. Hence, we obtain tile sizes, which
are as large as shared memory capacity MSM. This means
we execute only one tile per SM at a time. However, both
GPUs allow 48K shared memory per thread block. This
constraint is enforced such that we experience the benefit
of hyperthreading factor of two. In HHT paper [22], the
authors suggests tile sizes that maximize the compute to IO
ratio. We use similar strategies to construct what we call
the baseline experiments that enable a good exploration of
the feasible space.

The shared memory requirement of a tile is given by Mtile,
which is a function of tile size parameters. Shared memory
constraints limit the feasible number of tile sizes. We take
data points that maximize Mtile over MSM per thread block.
To explore hyperthreading, we add data points that allow
multiple thread blocks to execute concurrently on one SM.
Using this approach, for each experiment we select a set of
tile sizes tT, tS1 , and tS2 for 2D stencils. In addition to
these tile sizes, we select tS3 for 3D stencils. We generate 85
unique tile size combinations per experiment and, for each
of them, we explore 10 different values of nthr,i. Each unique
combination of an experiment with the parameters tT, tS1 ,
tS2 , and nthr,i is called a data point. Hence, our baseline-
experiment set contains 850 data points for each experiment.

The HHC compiler generates a separate program (code)
for every data point (it cannot produce codes with paramet-
ric tile sizes), a total of 850×(80+48) = 108, 800 data points.
We measure execution time of each data point over five runs,
and select the smallest of the five measurements. We made
this choice of the minimum (rather than the average) as this
is a common strategy in performance tuning/optimization
and, also, since our model makes optimistic assumptions re-
garding run time behavior, choosing the smallest time is
consistent with our modeling objective.

In order to complete the time model, additional hardware
parameters need to be specified. Some of the needed val-
ues can be taken from vendor-provided hardware specifica-
tions. Table 2 shows such parameters for our two platforms.

Table 2: GPU configuration

Architecture Parameters Type GTX 980 Titan X

nSM EH 16 24
nv EH 128 128
MSM [KB] EH 96 96
RSM EH 65536 65536
shared memory banks EH 32 32
max threadblocks per SM EH 32 32

Table 3: Parameter values for the micro-benchmarks

Parameter [unit] GTX 980 Titan X

L [s/GB] 7.36×10−3 5.42×10−3

τsync [s] 7.96×10−10 6.74×10−10

Tsync [s] 9.24×10−7 9.00×10−7

We also need values of the remaining parameters L, τsync,
Tsync and Citer, which could not be obtained from hardware
specifications. We conduct the following microbenchmark
experiments to gather these values.

5.2 Microbenchmarks
For L, τsync and Tsync, the micro-benchmarks are imple-

mented such that the execution time is dominated by the
operation of interest. The experimental parameter values
that we empirically determined are listed in Table 3.

Another crucial component in our model is Citer. The pa-
rameter Citer denotes the execution time of one iteration of
the loop body per vector unit provided that all the necessary
data is available in shared memory. Its value depends on the
types and number of operations in the loop body and on the
platform. Since we have 6 benchmarks and 2 platforms, we
need to determine 12 values for Citer, one per combination.
This is because Citer is independent of the problem size pa-
rameters.

Notice that Citer is not a simple function of the number
of arithmetic operations of each type, but is quite complex,
depending also on the instruction fetch/issue/execution la-
tency, instruction issue pipeline, control flow, shared mem-
ory bank conflicts, data dependency, and many other factors.
Analytically determining the execution time of a single it-
eration considering all these factors is a difficult problem.
Thus, we estimate the value of Citer empirically. For this
purpose, we remove all global⇔shared memory data trans-
fers, while making sure that the computations we want to
measure do not get optimized away. The execution time is
measured for 70 randomly picked problem and tile sizes and
is determined by dividing the execution time per vector unit
by the number of iterations of the particular instance. Fi-
nally, we take the average over all 70 runs to compute the
value of Citer for a benchmark-machine combination. The
resulting values are given in Table 4.

Now that we have the values of all parameters in our
model, we can use them to validate the model.

5.3 Validation Results
Using the parameter values from the previous subsection,

we compute the predicted execution time Talg for each data
point. For each benchmark-machine combination we have
10 problem sizes and 850 data points, which overall are

Table 4: Values of Citer in seconds

Benchmark GTX 980 Titan X

Jacobi2D 3.39×10−8 3.83×10−8

Heat2D 3.68×10−8 4.23×10−8

Laplacian2D 3.11×10−8 3.81×10−8

Gradient2D 6.09×10−8 7.60×10−8

Heat3D 1.55×10−7 1.64×10−7

Laplacian3D 1.36×10−7 1.44×10−7

8500 data points. We compute the root mean square er-
ror (RMSE) and observe that the RMSE is in the range of
45%–200% when considering the whole set of data points.
However, as our model is designed to optimistically predict
the execution time, these inaccuracies are expected. In fact,
they are inevitable as our model is not designed to precisely
predict the performance of data-points that result in ineffi-
cient implementations.

However, when restricting the analysis to the top perform-
ing (in terms of GFLOPS per second) data points, our model
turns out to be very accurate. Out of the 850 points for each
benchmark-platform combination, we observe that for all the
data points that are within 20% of the top performing one,
the RMSE is for all stencils on both GPUs below 10%. Fig-
ure 3 shows the correlation between the predicted and the
measured time over the top performing points.

In the following section, we show that the time model can
be used for tile size optimization.

6. TILE SIZE OPTIMIZATION
The model we developed in Section 4 can be used to pre-

dict the efficiency of a code for given values of size parame-
ters, such as S and T , but more importantly, it can be used
to select the compiler parameters, in our case, the tile sizes,
that lead to the best performance. We first formulate the
optimization problem mathematically, describe the limita-
tions that prevent a standard non-linear solver from finding
an optimal solution, and then describe how we solved the
problem via a simple exhaustive enumeration. Finally, we
present our experimental results.

6.1 The Optimization Problem
We formulate the problem of finding optimal tile sizes as

a mathematical optimization problem of the following type:

minimize
tS1

,tS2
,tT

Talg(tS1 , tS2 , tT)

subject to Mtile ≤MSM/threadblock

k ≤ MTBSM

kMtile ≤MSM

tS1–integer, tS2–multiple of 32, tT–even

(31)

where Mtile and k are functions of the tile sizes. We require
tT to be even, as necessary for hybrid-hexagonal tiling [22],
and tS2 to be a multiple of 32 to ensure that neighboring
threads in S2 fill complete warps (groups of 32 threads).

The optimization problem at hand is of a type that does
not allow very efficient solution methods as it is non-linear
and non-convex and has integer variables. On the other
hand, it has a small number of variables (only three). Also,
despite the problem being non-continuous due to the ceiling

Figure 3: Observed execution time vs. model predicted time on GTX 980 and on Titan X, where Talg base denotes the model
predicted time and Texec base denotes the measured execution time for the baseline experiments.

Figure 4: Talg for Heat2D and GTX 980 as a function of tT
and tS2 and with tS1 fixed at 8. The red dot shows Talg min,
the point of minimum over all Talg.

and floor functions, it can be made continuous by replac-
ing these functions with new variables and inequality con-
straints, e.g., the ceiling in dxe can be eliminated by intro-
ducing a new integer variable xc to replace dxe and adding
the inequality x ≤ xc, assuming Talg is a non-decreasing
function with respect to dxe. Figure 4 illustrates the shape
of Talg as a 2D function (the 3D plot is sliced at tS1 = 8)
and shows that Talg varies significantly with the tile sizes,
so careful tile size selection is indeed important for getting
good performance.

We encoded the optimization problem in the modeling
language AMPL [18] and solved it using several non-linear
solvers, including commercial ones. The best results were
obtained using the open-source solver Bonmin [7]. All those
solvers use heuristics that allow relatively good (but sub-
optimal) solution to be found for large problems, but for
small problems like ours they do not offer an option to do
an exhaustive search that would find the optimal solution.

One of the main reasons for the somewhat disappointing
performance is that the feasible space of the optimization
problem 31 does not capture an important pragmatic aspect
of the GPU code, as we are unable to model it, namely the
number of physical registers that the generated code uses:
this information is only available after the generated code is
compiled. It is well known that if the number of registers
exceeds the number of physical registers in the SM, namely
the hardware parameter RSM, the additional registers are
implemented as “virtual registers” and get spilled and re-
stored from global memory. This is known to be extremely
inefficient and slows down the generated code.

In our model, we do not have a function for Rtile, since
this is very difficult to model analytically. Because of this,
we used the following approach.

• We evaluate our objective function within the entire
feasible space of of Eqn 31.

• We keep all points that yield execution times within
10% of model predicted minimum value of Talg. Many
of these were not in our set of 850 baseline experiments.

• We generated codes for the new tile sizes in this set
and evaluated their performance.

6.2 Experimental Results
We observe that the new tile sizes perform better than

those obtained in baseline. Figure 5 shows the execution
times and model-predicted times for the Gradient-2D sten-
cil for a problem size of S1 = 8192, S2 = 8192 and T = 8192.
Clearly, the optimal tile sizes predicted by the model out-
perform the best baseline tile sizes. As we search within
the 10% vicinity of Talg min, we find multiple near-optimal
points. Baseline observed best is at 19.8 seconds, whereas
our model predicted optimal gives us a tile size that takes
16.5 seconds, which is a 17% improvement in performance.
This model predicted tile size was not explored in our set of

Figure 5: Predicted tile size performance of Gradient-2D for
S1 = 8192, S2 = 8192 and T = 8192 on GTX 980.

Figure 6: Average (over 10 problem sizes) GFlops/Sec
achieved by different tile size selection strategies for 2D sten-
cils.

baseline tile sizes. Moreover, we observe multiple near opti-
mal points in the range of 16.5-19.8 seconds. We get similar
performance improvements for all 2D stencils on both plat-
forms over all different problem sizes.

We compare the performance of different tile sizes ob-
tained from HHC, Talg min, Exhaustive search and best within
10% of Talg min. Figure 6 shows the average GFlops per sec-
ond achieved by different tile size selection strategies for 2D
stencils over ten different problem sizes. It is clear that tile
sizes corresponding to Talg min have poor performance in all
cases. Another important conclusion is that the conven-
tional wisdom of using large tile sizes does not yield best
performance. The tile sizes that are within 10% of Talg min

give the best performance with improvement of 60% over
HHC and 9% over Baseline.

Finally, note that exhaustive searching over the entire fea-
sible space is not practical, and no autotuner does this. HHC
does not have an established autotuner. Comparing against
a generic autotuner (e.g., opentuner) could be interesting,
but tuning without good domain knowledge will be difficult,
as the search space isn’t easy to navigate. The feasible space
is at least 200 times larger than the number of experiments
we ran, and these took many weeks of dedicated machine
time.

7. DISCUSSION
There are many “rules of thumb” used to optimize GPU

programs. Expert programmers strive to ensure “high oc-
cupancy,” avoid control-divergence, “coalesce” their memory
accesses, and tune the number of threads. They also sug-
gest maximizing the shared-memory footprint, while ensur-
ing latency-hiding of memory accesses (usually by virtualiz-
ing multiple threadblocks per physical core). While all these
parameters are very difficult to tune, many of these condi-
tions are already ensured by a highly tuned domain specific
compiler like HHC. Moreover, our model deliberately ignores
some of these. We now discuss the limitations, and also the
generality of our approach.

Execution of full warps without thread divergence (except
on data-space boundaries) is guaranteed by the HHC com-
piler, if tile sizes in the innermost dimension are multiples
of 32. So we use this to ensure divergence-freedom for all
configurations that we predict/model/generate. Similarly,
the HHC compiler generates code that guarantees coalesced
accesses. This justifies some of our optimistic assumptions.

Limitations.
The two key limitations of our model are in register usage

and the number of threads-per-block (in possibly multiple
dimensions). Both are very difficult to model analytically.
Although the register usage does not feature directly in our
objective function, it appears in a constraint of the feasible
space: our optimistic model holds only if register spills do
not slow down the execution. However, this can only be
known after the back-end nvcc compiler is called. Because
of this, the results using an off-the-shelf solver like Bonmin
were disappointing, and we used the script-driven exhaustive
analytical evaluation described in Section 6.1.

The threads-per-block parameter(s) have a significant im-
pact on performance, and this is also hard to model. Largely
because of this, our tile selection could not be accomplished
using only model-based optimization, but needed additional
exploration of the search space in the vicinity of the model-
predicted optima. However, we did take it into account
during experimentation. Among the high-performing in-
stances, we found that the values of this parameter that
yielded the locally best performance was easily predictable—
empirically, rather than analytically. The threads-per-block
parameter used in our final, optimization experiments use
this empirically predicted value.

Generality.
Our model can be extended to other stencil types for

e.g., higher order stencils (provided they can be handled
by HHC-compiler). When dependences change, the slopes
of the hexagons change by constant factors, the memory
footprints change similarly, etc. These are exactly the terms
that a polyhedral compiler like HHC manipulates when allo-
cating memory buffers, and constructing loop bounds. Our
ongoing work is in incorporating the model into the compiler
itself.

We reiterate that although the model is specific to HHC,
the approach itself, which involves the choice of parameter
hierarchy and the methods of their estimation/approximation,
is extensible. For rectangular tiles, for instance, the formu-
lae for Nw, mi, mo, etc., will be different, but the elementary
software and hardware parameters will be the same, and the

methods for deriving the formulae will be similar.

Revisiting conventional wisdom.
A commonly used “rule of thumb” suggests that the op-

timal tiling strategy is to choose the “largest possible tile
size that fits” i.e., its memory footprint matches the avail-
able capacity. Our results suggest that we should question
this. First of all, this strategy precludes overlapping of com-
putation and communication (the “hyperthreading effect”).
But this can be avoided by explicitly accounting for hyper-
threading. Indeed, many modern GPU platforms preclude
such large size by limiting the maximum data footprint of a
thread block to only half the shared memory capacity. So
the “hyperthreading-adjusted conventional wisdom” would
seek to maximize tile volume subject to the half-capacity
constraint—the best strategy is the largest tile volume for
the given footprint.

Our experimental data suggests otherwise—an even higher
hyperthreading factor turns out to yield best performance in
a wide range of our experiments. We still don’t know why,
and this is the subject of our ongoing investigation.

8. CONCLUSION
We developed a model for the execution time of stencil

codes on the GPU platform and used it for tile size selec-
tion for stencil codes generated by the HHC polyhedral com-
piler. Our model is very accurate for predicting the times of
problem instances whose performance is within 20% of the
optimal and, hence, it can be used to find values for tun-
able parameters that will give near optimal performance.
We applied our model for optimizing the tile sizes and ex-
perimentally observed a noticeable improvement in perfor-
mance when compared with manually determined best tile
sizes found after significant numbers of experiments.

To investigate the predictive capability of the model, we
explored all points with predicted performance within 10%
of Talg min. This is because our model does not explicitly
model many architectural and code features: thread diver-
gence, imbalance among threads in the same warp, branch
divergence, memory bank conflicts, etc. We also do not
model the effect of the number of registers per thread block,
a factor that can only be obtained “post mortem” after the
nvcc compiler. This is why it is still necessary to have an
empirical tuning phase, but we have shown that the number
of points that need to be explored is relatively small.

Finally, we would like to note that a large part of the time
and effort of conducting our experiments was the code gen-
eration effort. The HHC compiler generated codes where
the tile size and many other parameters are fixed at compile
time, necessitating a separate call to the compiler for each
data point in our experiments. For some of the points this
ran into several tens of seconds, and was a significant frac-
tion of the total time that the experimentation took. We
are therefore also exploring the use of parametric tiled code
generation, where a single parametric code is generated once
for a given input program, and can be reused for different
tile sizes. Here, tile sizes may be set a launch time or even
dynamically during execution. The trade-off this brings be-
tween code efficiency and compilation time is the subject of
our ongoing research.

9. REFERENCES
[1] N. Ahmed, N. Mateev, and K. Pingali. Synthesizing

transformations for locality enhancement of
imperfectly-nested loop nests. International Journal of
Parallel Programming, 29(5):493–544, 2001.

[2] K. Asanovic, R. Bodik, B. C. Catanzaro, P. Gebis, J.
J. abd Husbands, K. Keutzer, D. A. Patterson, W. L.
Plishker, J. Shalf, S. W. Williams, and K. A. Yelick.
The landscape of parallel computing research: A view
from Berkeley. EECS Tech Report EECE-2006-183,
UC Berkeley, Decembeer 2006.

[3] V. Bandishti, I. Pananilath, and U. Bondhugula.
Tiling stencil computations to maximize parallelism.
In Proceedings of the International Conference on
High Performance Computing, Networking, Storage
and Analysis, SC ’12, pages 40:1–40:11, Los Alamitos,
CA, USA, 2012. IEEE Computer Society Press.

[4] C. Bleck, R. Rooth, D. Hu, and L. T. Smith.
Salinity-driven Thermocline Transients in a Wind-
and Thermohaline-forced Isopycnic Coordinate Model
of the North Atlantic. Journal of Physical
Oceanography, 22(12):1486–1505, 1992.

[5] U. Bondhugula, V. Bandishti, A. Cohen, G. Potron,
and N. Vasilache. Tiling and optimizing time-iterated
computations on periodic domains. In Proceedings of
the 23rd International Conference on Parallel
Architectures and Compilation, PACT ’14, pages
39–50, New York, NY, USA, 2014. ACM.

[6] U. Bondhugula, A. Hartono, J. Ramanujam, and
P. Sadayappan. A practical automatic polyhedral
program optimization system. In ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), June 2008.

[7] Bonmin Project Page.
https://projects.coin-or.org/Bonmin, 2015 (accessed
March 11, 2016).

[8] R. A. Chowdhury, H.-S. Le, and V. Ramachandran.
Cache-oblivious dynamic programming for
bioinformatics. TCBB, 7(3):495–510, July-September
2010.

[9] M. Christen, O. Schenk, and H. Burkhart. Patus: A
code generation and autotuning framework for parallel
iterative stencil computations on modern
microarchitectures. In Parallel Distributed Processing
Symposium (IPDPS), 2011 IEEE Int., pages 676–687,
May 2011.

[10] A. Darte, Y. Robert, and F. Vivien. Scheduling and
Automatic Parallelization. Birkhaüser, 2000.

[11] K. Datta, M. Murphy, V. Volkov, S. Williams,
J. Carter, L. Oliker, D. Patterson, J. Shalf, and
K. Yelick. Stencil computation optimization and
auto-tuning on state-of-the-art multicore
architectures. In SC08: Proceedings of the 2008
ACM/IEEE conference on Supercomputing, pages
4:1–4:12, Austin, TX, November 2008.
http://portal.acm.org/citation.cfm?id=1413370.1413375.

[12] H. Dursun, K. Nomura, L. Peng, R. Seymour,
W. Wang, R. K. Kalia, A. Nakano, and P. Vashishta.
A multilevel parallelization framework for high-order
stencil computations. In Euro-Par 09, pages 642–653,
Delft, The Netherlands, August 2009.

[13] H. Dursun, K. Nomura, W. Wang, M. Kunaseth,

https://projects.coin-or.org/Bonmin

L. Peng, R. Seymour, R. K. Kalia, A. Nakano, and
P. Vashishta. In-core optimization of high-order stencil
computations. In PDPTA, pages 533–538, Las Vegas,
NV, July 2009.

[14] J. F. Epperson. An Introduction to Numerical Methods
and Analysis. Wiley-Interscience, 2007.

[15] P. Feautrier. Dataflow analysis of array and scalar
references. International Journal of Parallel
Programming, 20(1):23–53, Feb 1991.

[16] P. Feautrier. Some efficient solutions to the affine
scheduling problem. Part I. one-dimensional time.
International Journal of Parallel Programming,
21(5):313–347, 1992.

[17] P. Feautrier. Some efficient solutions to the affine
scheduling problem. Part II. multidimensional time.
International Journal of Parallel Programming,
21(6):389–420, 1992.

[18] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL:
A Modelling Language for Mathematical Programming.
Duxbury Press, Brooks/Cole Publishing Company,
2nd edition, 2002.

[19] M. Frigo, C. E. Leiserson, H. Prokop, and
S. Ramachandran. Cache-oblivious algorithms. In
FOCS: IEEE Symposium on Foundations of Computer
Science, pages 285–297, New York, NY, October 1999.

[20] M. Frigo and V. Strumpen. Cache oblivious stencil
computations. In Proc. of the 19th Annual Int. Conf.
on Supercomputing, ICS ’05, pages 361–366, New
York, NY, USA, 2005. ACM.

[21] S. M. Griffies, C. Böning, F. O. Bryan, E. P.
Chassignet, R. Gerdes, H. Hasumi, A. Hirst, A.-M.
Treguier, and D. Webb. Developments in Ocean
Climate Modelling. Ocean Modelling, 2:123–192, 2000.

[22] T. Grosser, A. Cohen, J. Holewinski, P. Sadayappan,
and S. Verdoolaege. Hybrid hexagonal/classical tiling
for GPUs. In CGO, page 66, Orlando, FL, Feb 2014.

[23] T. Gysi, T. Grosser, and T. Hoefler. Modesto:
Data-centric analytic optimization of complex stencil
programs on heterogeneous architectures. In Proc. of
the 29th ACM on Int. Conf. on Supercomputing, ICS
’15, pages 177–186, New York, NY, USA, 2015. ACM.

[24] T. Gysi, C. Osuna, O. Fuhrer, M. Bianco, and T. C.
Schulthess. Stella: A domain-specific tool for
structured grid methods in weather and climate
models. In Proc. of the Int. Conf. for High
Performance Computing, Networking, Storage and
Analysis, SC ’15, pages 41:1–41:12, New York, NY,
USA, 2015. ACM.

[25] T. Henretty, R. Veras, F. Franchetti, L.-N. Pouchet,
J. Ramanujam, and P. Sadayappan. A stencil compiler
for short-vector simd architectures. In Proceedings of
the 27th International ACM Conference on
International Conference on Supercomputing, ICS ’13,
pages 13–24, New York, NY, USA, 2013. ACM.

[26] J. Holewinski, L.-N. Pouchet, and P. Sadayappan.
High-performance code generation for stencil
computations on GPU architectures. In Proc. of the
26th ACM Int. Conf. on Supercomputing, ICS ’12,
pages 311–320, New York, NY, USA, 2012. ACM.

[27] S. Hong and H. Kim. An analytical model for a GPU
architecture with memory-level and thread-level
parallelism awareness. In Proceedings of the 36th

Annual International Symposium on Computer
Architecture, ISCA ’09, pages 152–163, New York, NY,
USA, 2009. ACM.

[28] C. John. Options, Futures, and Other Derivatives.
Prentice Hall, 2006.

[29] S. Kamil, C. Chan, L. Oliker, J. Shalf, and
S. Williams. An auto-tuning framework for parallel
multicore stencil computations. In Parallel Distributed
Processing (IPDPS), 2010 IEEE International
Symposium on, pages 1–12, April 2010.

[30] S. Kamil, K. Datta, S. Williams, L. Oliker, J. Shalf,
and K. Yelick. Impact of modern memory subsystems
on cache optimizations for stencil computations. In
MSPC 2005: Workshop on Memory Systems
Performance, pages 36–43, Chicago, IL, June 2005.
ACM Sigplan.

[31] S. Kamil, K. Datta, S. Williams, L. Oliker, J. Shalf,
and K. Yelick. Implicit and explicit optimizations for
stencil computations. In MSPC 2006: Workshop on
Memory Systems Performance and Correctness, pages
51–60, San Jose, CA, October 2006. ACM Sigplan.

[32] S. Krishnamoorthy, M. Baskaran, U. Bondhugula,
J. Ramanujam, A. Rountev, and P. Sadayappan.
Effective automatic parallelization of stencil
computations. In PLDI 2007: Proceedings of the 2007
ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 235–244,
San Diego, CA, June 2007. ACM.

[33] Z. Li and Y. Song. Automatic tiling of iterative stencil
loops. ACM Trans. Program. Lang. Syst.,
26(6):975–1028, Nov. 2004.

[34] P. Liu, R. Seymour, K. Nomura, R. K. Kalia,
A. Nakano, P. Vashishta, A. Loddoch, M. Netzband,
W. R. Volz, and C. C. Wong. High-order stencil
computations on multicore clusters. In IPDPS 2009:
IEEE International Parallel abd Distributed Processing
Symposium, pages 1–11, Rome, Italy, May 2009.

[35] C. Mauras, P. Quinton, S. Rajopadhye, and
Y. Saouter. Scheduling affine parameterized
recurrences by means of variable dependent timing
functions. In S. Y. Kung and E. Swartzlander, editors,
International Conference on Application Specific
Array Processing, pages 100–110, Princeton, New
Jersey, Sept 1990. IEEE Computer Society.

[36] W. Mei, W. Shyy, D. Yu, and L. S. Luo. Lattice
Boltzmann Method for 3-D Flows with Curved
Boundary. Journal of Computational Physics,
161(2):680–699, 2000.

[37] J. Meng and K. Skadron. Performance modeling and
automatic ghost zone optimization for iterative stencil
loops on GPUs. In Proceedings of the 23rd
International Conference on Supercomputing, ICS ’09,
pages 256–265, New York, NY, USA, 2009. ACM.

[38] P. Micikevicius. 3D finite difference computation on
GPUs using CUDA. In GPPGPU, pages 79–84,
Washington, DC, March 2009.

[39] R. T. Mullapudi, V. Vasista, and U. Bondhugula.
Polymage: Automatic optimization for image
processing pipelines. In Proceedings of the Twentieth
International Conference on Architectural Support for
Programming Languages and Operating Systems,
ASPLOS ’15, pages 429–443, New York, NY, USA,

2015. ACM.

[40] A. Nakano, R. K. Kalia, and P. Vashishta.
Multiresolution Molecular Dynamics Algorithm for
Realistic Materials Modeling on Parallel Computers.
Computer Physics Communications, 83(2-3):197–214,
1994.

[41] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and
P. Dubey. 3.5D blocking optimization for stencil
computations on modern CPUs and GPUs. In
Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’10, pages 1–13,
Washington, DC, USA, 2010. IEEE Computer Society.

[42] A. Nitsure. Implementation and optimization of a
cache oblivious lattice boltzmann algorithm. Master’s
thesis, Institut für Informatic,
Friedrich-Alexander-Universität Erlangen-Nürnberg,
July 2006.

[43] L. Peng, R. Seymour, K. ichi Nomura, R. K. Kalia,
A. Nakano, P. Vashishta, A. Loddoch, M. Netzband,
W. R. Volz, and C. C. Wong. High-order stencil
computations on multicore clusters. In IPPS, 2009.

[44] P. Quinton and V. Van Dongen. The mapping of
linear recurrence equations on regular arrays. Journal
of VLSI Signal Processing, 1(2):95–113, 1989.

[45] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris,
F. Durand, and S. Amarasinghe. Halide: A language
and compiler for optimizing parallelism, locality, and
recomputation in image processing pipelines. In
Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and
Implementation, PLDI ’13, pages 519–530, New York,
NY, USA, 2013. ACM.

[46] S. V. Rajopadhye, S. Purushothaman, and R. M.
Fujimoto. On synthesizing systolic arrays from
recurrence equations with linear dependencies. In
Proceedings, Sixth Conference on Foundations of
Software Technology and Theoretical Computer
Science, pages 488–503, New Delhi, India, December
1986. Springer Verlag, LNCS 241.

[47] G. Rizk, D. Lavenier, and S. Rajopadhye. GPU
accelerated RNA folding algorithm, chapter 14.
Morgan Kauffman, 2010. in GPU Computing Gems 4,
editor: W-M. Hwu.

[48] M. Shaheen and R. Strzodka. Numa aware iterative
stencil computations on many-core system. In 26th
IEEE International Parallel and Distributed
Processing Symposium (IPDPS), Shanghai, China,
2012.

[49] J. Shirako, K. Sharma, N. Fauzia, L.-N. Pouchet,
J. Ramanujam, P. Sadayappan, and V. Sarkar.
Analytical Bounds for Optimal Tile Size Selection,
pages 101–121. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012.

[50] R. Strzodka, M. Shaheen, and D. Pajak. Time skewing
made simple (poster). In Proceedings of the 16th ACM
Symposium on Principles and Practice of Parallel
Programming, PPoPP ’11, pages 295–296, New York,
NY, USA, 2011. ACM.

[51] R. Strzodka, M. Shaheen, D. Pajak, and H.-P. Seidel.
Cache oblivious parallelograms in iterative stencil
computations. In 24th ACM/SIGARCH International

Conference on Supercomputing (ICS), pages 49–59,
Tsukuba, Japan, June 2010.

[52] R. Strzodka, M. Shaheen, D. Pajak, and H. P. Seidel.
Cache accurate time skewing in iterative stencil
computations. In Parallel Processing (ICPP), 2011
International Conference on, pages 571–581, Sept
2011.

[53] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K.
Luk, and C. E. Leiserson. The pochoir stencil
compiler. In Proceedings of the Twenty-third Annual
ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA ’11, pages 117–128, New York,
NY, USA, 2011. ACM.

[54] S. Verdoolaege, J. Carlos Juega, A. Cohen,
J. Ignacio Gómez, C. Tenllado, and F. Catthoor.
Polyhedral parallel code generation for CUDA. ACM
Transactions on Architecture and Code Optimization
(TACO), 9(4):54, 2013.

[55] R. C. Whaley, A. Petitet, and J. J. Dongarra.
Automated empirical optimizations of software and
the atlas project. Parallel Computing, 27(1):3–35,
2001.

[56] M. E. Wolf and M. S. Lam. A data locality optimizing
algorithm. In ACM Sigplan Not., volume 26, pages
30–44. ACM, 1991.

[57] M. J. Wolfe. Iteration space tiling for memory
hierarchies. Parallel Processing for Scientific
Computing (SIAM), pages 357–361, 1987.

[58] D. Wonnacott. Time skewing for parallel computers.
In Languages and Compilers for Parallel Computing,
12th International Workshop, LCPC’99, La Jolla/San
Diego, CA, USA, August 4-6, 1999, Proceedings, pages
477–480, 1999.

[59] D. Wonnacott. Achieving scalable locality with time
skewing. International Journal of Parallel
Programming, 30(3):1–221, 2002.

[60] J. Xue. Loop Tiling for Parallelism, volume 575 of
Kluwer International Series in Engineering and
Computer Science. Kluwer, 2000.

[61] K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong,
M. Garzaran, D. Padua, K. Pingali, P. Stodghill, and
P. Wu. A comparison of empirical and model-driven
optimization. In Proceedings of the ACM SIGPLAN
2003 Conference on Programming Language Design
and Implementation, PLDI ’03, pages 63–76, New
York, NY, USA, 2003. ACM.

	Introduction
	Related Work
	Stencils and their Parallelization
	Hybrid Hexagonal/Classical Tiling
	Details of the HHC Compiler

	Execution Time Model
	Model for Hexagonal Tiling
	Execution Time of a Tile
	No Hyperthreading
	Hyperthreading

	Hybrid Hexagonal/Classic Tiling for 2D Stencils
	Total Execution Time of Jacobi 2D
	Execution Time of a Tile

	Hybrid Hexagonal/Classic Tiling for 3D stencils
	Total Execution Time of Jacobi 3D
	Execution Time of a Slab

	Experimental Validation
	Baseline Experiments
	Microbenchmarks
	Validation Results

	Tile Size Optimization
	The Optimization Problem
	Experimental Results

	Discussion
	Conclusion
	References

