
Optimistic Loop Optimization
CGO 2017 – February 8th – Austin, TX

Johannes Doerfert and Sebastian Hack
Compiler Design Lab
Saarland University
http://compilers.cs.uni-saarland.de

Tobias Grosser
Department of Computer Science
ETH Zürich
https://spcl.inf.ethz.ch

http://compilers.cs.uni-saarland.de
https://spcl.inf.ethz.ch


Motivating Example



A Potentially Parallel Loop

for (i = 0; i < N; i++)
A[i] = A[N + i];

Read Set (R) Write Set (W)
{ A[N + i] | 0 ≤ i < N } { A[i] | 0 ≤ i < N }

{ A[(N + i) mod 256] | … }

R ∩ W = { } Parallel
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R ∩ W = { }, iff N <= 128 Potentially Sequential
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Problem Statement

Required:
Program abstractions that capture all possible semantics

Reality:
Corner cases are often missed or assumed not to happen

Consequence:
Poor applicability and miscompilations for certain inputs

Solution:
Take optimistic assumptions statically that are verified dynamically
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Solution



Optimistic Loop Optimization
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Optimistic Loop Optimization

1. Take Optimistic Assumptions to model the loop nest
2. Optimize the loop nest
3. Version the code

if ( )
/* optimized loop nest */
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/* loop nest */
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Optimistic Loop Optimization

1. Take Optimistic Assumptions to model the loop nest
2. Optimize the loop nest
3. Version the code
4. Create a simple runtime check

if (/* simple runtime check */)
/* optimized loop nest */

else
/* loop nest */
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Semantic Differences

C LLVM-IR Polyhedral Model
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Semantic Differences

C LLVM-IR Polyhedral Model
Variant Loads in Control Conditions

3 3 7
Aliasing Arrays

3 3 7
Integer Wrapping

3 3 7
Out-of-Bound Accesses

3 3 7
Potentially Unbounded Loops

3 3 7
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Real World Example

NAS Parallel Benchmark Suite – BT – compute_rhs
▶ 66 loops, nested up to depth 4
▶ 38 array writes, 294 array reads
▶ 45 reads in loop bounds
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Real World Example

double rhs[JMAX][IMAX ][5];

for (j = 0; j < grid [0] + 1; j++)

for (i = 0; i < grid [1] + 1; i++)
for (m = 0; m < 5; m++)

rhs[j][i][m] = /* ... */;

(a) Loads in control and access functions are invariant

(b) No aliasing/overlapping arrays

6



Assumption Generation

double rhs[JMAX][IMAX ][5];

for (j = 0; j < grid [0] + 1; j++)

for (i = 0; i < grid [1] + 1; i++)
for (m = 0; m < 5; m++)

rhs[j][i][m] = /* ... */;

(a) Loads in control and access functions are invariant

(b) No aliasing/overlapping arrays

6



Assumption Generation

double rhs[JMAX][IMAX ][5];

for (j = 0; j < grid [0] + 1; j++)

for (i = 0; i < grid [1] + 1; i++)
for (m = 0; m < 5; m++)

rhs[j][i][m] = /* ... */;

(a) Loads in control and access functions are invariant
(b) No aliasing/overlapping arrays 6



Assumption Generation

double rhs[JMAX][IMAX ][5];

for (j = 0; j < grid [0] + 1; j++)

for (i = 0; i < grid [1] + 1; i++)
for (m = 0; m < 5; m++)

assume &rhs[j][i][m] >= &grid [2] ||
assume &rhs[j][i][m + 1] <= &grid [0];
rhs[j][i][m] = /* ... */;

(a) Loads in control and access functions are invariant
(b) No aliasing/overlapping arrays 6



Assumption Generation

double rhs[JMAX][IMAX ][5];

for (j = 0; j < grid [0] + 1; j++)

for (i = 0; i < grid [1] + 1; i++)
for (m = 0; m < 5; m++)

assume &rhs[j][i][m] >= &grid [2] ||
assume &rhs[j][i][m + 1] <= &grid [0];
rhs[j][i][m] = /* ... */;

(c) Expressions do not wrap
6



Assumption Generation

double rhs[JMAX][IMAX ][5];

assume grid [0] != MAX_VALUE;
for (j = 0; j < grid [0] + 1; j++)
assume grid [1] != MAX_VALUE;
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No Wrapping Assumptions

Given an expression e with m bits:

IW(e) = {(i) | JeKZ ̸= JeKZ 2m/Z}

Let e be textually part of statement S with domain IS.
IWS(e) = IW(e) ∩ IS

IWS(e) describes executed loop instances for which e will wrap.
¬ IWS(e) describes sufficient constrains under which e will not wrap.

(c) Expressions do not wrap
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Assumption Hoisting
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Assumption Hoisting

double rhs[JMAX][IMAX ][5];
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Hoist, Combine & Simplify Assumptions
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Assumption Hoisting

Assumptions are Presburger Formulae

,

that can be
analyzed, combined and transformed.

Quantifier elimination is used to eliminate loop variables.

The result is a pre-condition of the original assumption.
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Assumption Hoisting

double rhs[JMAX][IMAX ][5];

assume grid [0] != MAX_VALUE &&
assume grid [1] != MAX_VALUE &&
assume grid [0] + 1 <= JMAX &&
assume grid [1] + 1 <= IMAX &&
assume (&rhs [0][0][0] >= &grid [2] ||
assume &rhs[grid [0]][ grid [1]][5] <= &grid [0]);

for (j = 0; j < grid [0] + 1; j++)
for (i = 0; i < grid [1] + 1; i++)

for (m = 0; m < 5; m++)
rhs[j][i][m] = /* ... */;
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Assumption Statistics

SPEC 2006 SPEC 2000
No Variant Loads Λ: 553 6

No Aliasing Λ: 132 52
No Wrapping Λ: 611 82

No Out-Of-Bounds Λ: 5 6
No Unbounded Loop Λ: 42 6

Total: 1343 152

After Simplification: < 671 (or < 50%) < 99 (or < 66%)
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Two’s complement modeling
increased compile time by

3− 3000%.



Applicability & Validity

SPEC 2006
w/o Λssumptions w/ Λssumptions

modeled: 35 191 ×5.45
feasible: 35 102 ×2.91
executed: 61k 5.2M ×85.24

valid: 61k 99.68% ∗ 5.2M ×85.21

SPEC 2000
w/o Λssumptions w/ Λssumptions

modeled: 24 83 ×3.45
feasible: 24 78 ×3.25
executed: 11k 729k ×66.27

valid: 11k 89.3% ∗ 729k ×59.18 12
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executed: 61k 5.2M ×85.24
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modeled: 24 83 ×3.45
feasible: 24 78 ×3.25
executed: 11k 729k ×66.27
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Assumptions fail
≈ 2%

of the time and cause
< 4%

runtime overhead.
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Finite Loop Assumption

Infinite loops create unbounded optimization problems



Finite Loop Assumption

Infinite loops create unbounded optimization problems

for (unsigned i = 0; i != N; i+=2)
A[i+4] = A[i];



Finite Loop Assumption

Infinite loops create unbounded optimization problems

if (N % 2 == 0) {

for (unsigned i = 0; i != N; i+=2)
A[i+4] = A[i];

} else {
/* original code */

}



Invariant Load Assumptions

for (i = 0; i < *Size1; i++)
for (j = 0; j < *Size0; j++)

...

Hoist invariant loads but keep control conditions intact.
Powerful in combination with runtime alias checks.
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Invariant Load Assumptions

auto Size0V , Size1V = *Size1;

if (Size1V > 0)
Size0V = *Size0;

for (i = 0; i < Size1V; i++)
for (j = 0; j < Size0V; j++)

...

Hoist invariant loads but keep control conditions intact.
Powerful in combination with runtime alias checks.



Assumption Simplification

Simplify Complicated Constraints:
assume &B[N + 2 − ((N − 1) % 3)] <= &A[0] ||
assume &A[N + 2 − ((N − 1) % 3)] <= &B[0];

assume &B[N + 2] <= &A[0] ||
assume &A[N + 2] <= &B[0];

for (i = 0; i < N; i += 3) {
A[i + 0] += 1.3 * B[i + 0];
A[i + 1] += 1.7 * B[i + 1];
A[i + 2] += 2.1 * B[i + 2];

}



Sound & Automatic Polyhedral Optimization

Polyhedral optimizations show great performance improvements,

though they often require manual pre-processing
and are unsound for corner case inputs.

SPEC 2006 – 456.hmmer – P7_Viterbi
−28% execution time

NAS Parallel Benchmark Suite – BT – compute_rhs
6× fold speedup with 8 threads [Metha and Yew, PLDI’15]
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Semantic Differences

Rust Java C LLVM-IR Polyhedral
Model

Variant Loads in Control Conditions
3 3 3 3 7

Aliasing Arrays
7 7 3 3 7

Integer Wrapping
3 3 3 3 7

Out-of-Bound Accesses
3 3 3 3 7

Potentially Unbounded Loops
3 3 3 3 7
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