Polly-ACC
Transparent compilation to heterogeneous hardware

Tobias Grosser
Department of Computer Science, ETH Zurich

tobias.grosser@inf.ethz.ch

ABSTRACT

Programming today’s increasingly complex heterogeneous
hardware is difficult, as it commonly requires the use of
data-parallel languages, pragma annotations, specialized li-
braries, or DSL compilers. Adding explicit accelerator sup-
port into a larger code base is not only costly, but also intro-
duces additional complexity that hinders long-term main-
tenance. We propose a new heterogeneous compiler that
brings us closer to the dream of automatic accelerator map-
ping. Starting from a sequential compiler IR, we automat-
ically generate a hybrid executable that - in combination
with a new data management system - transparently offloads
suitable code regions. Our approach is almost regression free
for a wide range of applications while improving a range of
compute kernels as well as two full SPEC CPU applications.
We expect our work to reduce the initial cost of accelerator
usage and to free developer time to investigate algorithmic
changes.

CCS Concepts

eComputer systems organization — Single instruc-
tion, multiple data; eSoftware and its engineering —
Compilers; Runtime environments;
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1. INTRODUCTION

To ensure continuous growth in compute performance hard-
ware platforms have become increasingly parallel and het-
erogeneous. Today, a typical workstation node does not
only provide a powerful multi-core CPU, but is often com-
bined with an even more powerful GPU accelerator. With
240 Gflop/s double precision performance for a 10-core Intel
Sandybridge and 1,707 Gflop/s for an NVIDIA Titan black
GPU accelerator, the accelerator is a significant source of
compute power.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ICS 16, Jun 01-June 03, 2016, Istanbul, Turkey

(© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4361-9/16/05. .. $15.00

DOL: http://dx.doi.org/10.1145,/2925426.2926286

Torsten Hoefler
Department of Computer Science, ETH Zurich

htor@inf.ethz.ch

Existing approaches for exploiting this compute power
commonly require developers to part from the general-purpose
sequential imperative programming model. Instead, devel-
opers can choose from a set of new options. Data paral-
lel programming models [39, 43] are used to manually pro-
gram accelerator-specific high-performance kernels. DSLs
[18, 30, 28, 41, 12] allow for the automatic generation of
high-performance code for a given problem domain. Fur-
thermore, general purpose parallel libraries [13, 8] enable
accelerator programming through the use of higher-level lan-
guage abstractions that are not limited to specific prob-
lem domains. Even though these programming approaches
have clear benefits, introducing them does not only result
in (sometimes large) initial development costs, but the in-
creased complexity of the ported application also hinders
future development.

When software maintenance is of high importance, mini-
mizing developer involvement is critical. For large software
projects, the use of high-performance library implementa-
tions [19, 17] or pragma based programming models [15, 50]
is consequently often recommended.! However, even though
these approaches preserve the sequential C code, they still
require developers to understand GPU programming. Auto-
matic accelerator mapping techniques, as developed in the
context of source-to-source compilation [48, 11, 6], can re-
move the need for such kind of expert knowledge, but sim-
ilarly to recent work on automatic compilation towards a
“GPU-first execution model” [37], their scope is limited.

To make heterogeneous computing as pervasive as auto-
matic SIMDization, we propose a minimally invasive ap-
proach directly integrated into an imperative compiler that
relies on the automatic detection and compilation of com-
pute kernels for heterogeneous systems. Similar to vectoriz-
ing compilers, we do not focus on algorithmic changes or the
generation of auto-tuned compute kernels. Instead, we aim
for making heterogeneous compute available to software that
otherwise would not (or only with large efforts) be ported
to a heterogeneous system. Even though large legacy ap-
plications are likely to benefit, this work also provides solid
foundations for the optimization of modern HPC software
written in idiomatic C++ with templates, iterators, and
lambda functions.

Implementing the compilation approach just proposed, we

!The programmer’s guide for Summit [3], the next gener-
ation Oak Ridge HPC cluster, suggests: “1) Using acceler-
ated programming libraries whenever possible, 2) Preferring
high-level compiler directives such as Open MP/Open ACC
over low-level frameworks such as CUDA or OpenCL.”


http://dx.doi.org/10.1145/2925426.2926286

present with Polly-ACC? an automatic, fully integrated het-
erogeneous compute compiler, that enables normal LLVM-
based compilers [32] to directly generate multi-device bina-
ries from a range of input languages.

Our contributions are:

e A minimal-invasive and fully integrated heterogeneous
compute compiler.

e Extraction of heterogeneous compute specific informa-
tion from low-level IR and translation to a schedule
tree.

e A lightweight and effective runtime library for auto-
matic data allocation and data transfer management.

e Experimental validation on the LLVM nightly test suite,
30 Polybench kernels, as well as SPEC 2006.

2. OVERVIEW OF THE HETEROGENEOUS
COMPILER

We first introduce the high-level design (Figure 1) of our
work. In a nutshell, our compiler follows a classical compiler
design with a set of front-ends, a mid-level optimizer, and
target-specific back-ends. We extend this design with a new
heterogeneous compute mid-level optimizer, which enables
sequential compilers to produce hybrid binaries.

Kernel extraction from a variety of languages

To optimize a variety of programming languages frontends
are often used to translate source code to a common inter-
mediate representation (IR). For our work we use LLVM
as compiler infrastructure and apply optimizations on its
IR (LLVM-IR). Given a source code file —@, one of

the many LLVM based compilers @ -@ translates it to a

language-independent IR @ on which all subsequent trans-
formations are performed. As a result, a range of program-
ming languages (C/C++, Fortran, Julia, Go, ...)* can be
optimized by our compiler.

At the compiler IR level interesting compute kernels are
detected, extracted, and modeled. To prepare kernel ex-
traction, we first apply a set of canonicalization passes @
Next, we detect program parts consisting of (mostly) static
control (SCoPs). To extract such regions we rely on an en-
hanced version of Polly [25], a polyhedral loop optimizer
for LLVM. From Polly we obtain for each compute kernel a
mathematical description in terms of Presburger sets (Sec-
tion 3.1) which describe in combination with a set of precise
data-dependence relations, the exact memory access behav-
ior of each kernel.

Accelerator mapping

The execution strategy of each compute kernel is described
as a schedule tree [27], which maps the individual dynamic
computations in the kernel to relative execution times. A
schedule tree is a hybrid data structure for modeling com-
plex loop kernels that uses Presburger sets to describe the
performed computation, but models the execution strategy

% http://spcl.inf.ethz.ch/Polly-ACC

3How effective we can optimize different input languages
depends on how well language abstractions are eliminated
when lowering to LLVM-IR.

as a tree of multi-dimensional schedules (and more special-
ized tree nodes) that can be transformed with simple tree
operations. The transformation from our sequential kernel
to a heterogeneous compute program takes place entirely on
schedule trees.

Starting off with an initial schedule tree corresponding to
the sequential source code, heterogeneous compute code is
introduced. To expose parallelism and increase data locality
an improved sequential schedule is obtained through a mod-
ified version of the Pluto scheduler [16] as available through
isl [45] @ We then map the parts of the schedule tree to the
accelerator @ for which this mapping is profitable. Compo-
nents that cannot be mapped efficiently remain unchanged.
As part of this mapping we introduce host-device data trans-
fers and distribute the computation to device threads and
thread groups. Within each kernel, necessary transfers be-
tween global and shared memory are introduced. Thread
private memory is used, if deemed profitable. The mapping
strategy we use corresponds to ppcg [46] and is indeed per-
formed by calling into a recent version of ppcg.

CPU and device code generation

As a next step, the heterogeneous compute schedule is trans-
lated back to imperative compiler IR. We first translate the
heterogeneous-compute schedule tree to an imperative AST.
For this we use a new AST generator [27] that supports AST
generation from schedule trees. The resulting AST is then
translated further down to LLVM-IR. When (re)generating
LLVM-IR we first translate the outer levels of the imperative
AST to host code , until we reach device kernels.

When reaching device kernels @b) - , some special pro-
cessing is necessary. First, CUDA-specific run-time calls are
emitted that launch kernels. In the kernels, accesses to pri-
vate/shared memory as well as inter-thread synchronization
primitives are emitted according to the applied GPU map-
ping decisions. Once kernel code has been generated, it is
extracted into a separate IR, module which is then passed
to LLVM’s integrated GPU backend and translated to PTX
code . The PTX code is integrated back into our host bi-
nary by storing it as a global variable (11). At run time, the
kernel code is (re)loaded just before it is scheduled for execu-

tion. The possible, but not yet implemented, generation of
OpenCL code @/@ follows the generation of CUDA code.

Finally, the complete multi-device executable is emitted .

2.1 Data management library

The resulting binary is run in combination with a run-
time library that manages allocations and data transfers @

() The primary goal of this library is to optimize hybrid
binaries where execution switches regularly between sequen-
tial host code and parallel device code. In this situation our
run-time library ensures that data is kept on the device even
while running sequential host code and is only moved back
if needed.

3. PRESBURGER SETS AND SCHEDULES

The following sections introduce important concepts used
in our work and give a first understanding of what kind
of compute kernels can be automatically mapped by our
compiler.

3.1 Presburger sets and relations
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Figure 1: The architecture of our heterogeneous compiler

An affine expression e is either an integer constant (c), a
variable (n), or the result of negating an affine expression
(—e), adding or subtracting two affine expressions (e1 + ez
or e; — e2), or multiplying an integer constant with an affine
expression (¢ X e). A quasi-affine expression additionally
allows floor divisions by an integer constant (|e/c]) and the
remainder of such a division (e mod ¢).

A Presburger formula p is either a boolean constant (T, L),
the result of a boolean operation (—p,p1 A p2,p1 V p2), a
quantified expression (Vz : p,3z : p), or a comparison be-
tween different (quasi) affine expressions (e1 @ e2,® € {<
,<,>,>}). An n-dimensional Presburger set s is a subset
of Z™ where the elements of s are described by a Presburger
formula. An example of a two-dimensional Presburger set
is {d = (do,d1) | 0 < do < 100 Ado < di < n}, of an
empty Presburger is {(do,d1,dz2) | L}, and of a universal
set is {(do,d1)}. Named Presburger sets can contain ele-
ments from differently named spaces. The set {[A, (¢,7)] |
1 < j;[B,(4)] | ¢ < 100} contains for example elements from
space A and B. A Presburger relation r is a subspace of
Z™ x Z"™ that is constrained by a Presburger formula and has
the form {(d1,d2) — (f1) | di + d2 > fi}. Presburger sets
and relations are closed under normal set operations such as
union, intersection, or subtraction and allow the projection
onto subspaces. See Verdoolaege [47] for more background.

3.2 Modeling programs with schedule trees

For certain sufficiently regular program regions the com-
putations they perform and their memory access behavior
can be precisely modeled at compile time. We call such
regions static control parts (SCoPs) [23]. They consist of if-
conditions and for-loops, where control-flow as well as loop
exit conditions are Presburger expressions and loop strides
are constants. As an extension, data-dependent conditions

are permitted using may-write accesses to approximate the
memory behaviour. Listing 1 shows an artificial example
of a static control part. It contains two statements. S1
is executed inside three loops, while S2 is sharing just the
outermost loop with S1 and is additionally guarded by a
data-dependent condition.

Listing 1 Simple static control program
int n; int pl; int p2;
float A[][n], float B[i];
for (int i = 0; i < n; i++) {
for (dnt j = i; j < m; j++)
for (int k = 0; k < pl || k < p2; k++)

S1: A[i1[j] = k = B[i]
// Mark "A"
S2: ) if (B[il) A[il[i] = A[i]([i] / B[il;

The computational behavior of a SCoP can be modeled
with schedule trees [27]. A schedule tree consists of different
nodes. At its root, the domain node describes the statement
instances executed in the SCoP using a Presburger set. As
child of the domain node, a tree containing nodes of different
types defines the execution order of the instances declared in
the domain node. The most general node type is a band node
which uses a Presburger relation to assign each instance a
partial (possibly multi-dimensional) relative execution time.
In case multiple groups of instances should be executed one
after another, a sequence node can be used. It defines a
list of schedule subtrees that are executed in sequence and
is followed by filter nodes that limit the set of statement
instances considered in each subtree. Besides these basic
types, there is also a marker node to identify subtrees in the
schedule and some other nodes not discussed here.

Figure 2 illustrates a schedule tree that models the ex-
ample given in Listing 1. At its root, a domain node de-



domain

[S1,(2,7,k)] |1 0<i<j<nAO0<EkA(k<plVk<p2)
[52,()] [ 0<i<n

\

[SL, (3,5, k)] = (4)

seq sequence

/

[S1,(i,7,k)] filter

[‘917 (i7j7 k)} — (.7: k) band

[S2,(i)] filter

Mark ”A” marker

Figure 2: Possible schedule tree for code in Listing 1

scribes the iteration spaces of S1 and S2 as Presburger sets.
Right after the domain node, a single dimensional band
node defines a partial order that maps statement instances
executed in different i-loop iterations to distinct execution
times. Next, a sequence and filter node combination models
the textual order of the loop nest around S1 and the code
around S2. In the S1 subtree, an additional two-dimensional
band node defines a partial order that corresponds to the
original execution order of the j and k-loop. Combined with
the previous nodes, a total execution order for S1 is estab-
lished. In the S2 branch, all statement instances are already
mapped to distinct execution times. The only node visible
is a marker node, which is used to model the correspond-
ing comment in the source code. Overall, the schedule tree
corresponds well to the structure of the source code, but im-
perative control flow structures are lifted to a more abstract
execution order definition.

4. LOW-LEVEL IR TO HYBRID CODE

We now discuss in detail the IR level analyses and trans-
formations necessary to obtain a hybrid binary following the
general structure introduced in Section 2.

4.1 1R canonicalization

Before our optimizer, a set of canonicalization passes is
scheduled @ These passes include memory to register
translation, constant propagation, and the simplification of
induction variables and control flow. We also (optionally)
schedule an iterative inline — simplification — inline cycle to
eliminate abstractions such as C++ templates. For large
programs, running global value numbering (GVN) can re-
duce the number of memory loads in the program, which
often reduces compile time in later passes. However, as load
elimination can introduce scalar dependences that limit par-
allelism and hinder later device mapping, GVN remains op-
tional.

4.2 Translate low-level IR to schedule tree

Iteration spaces and an initial schedule tree are computed
by traversing the control flow graph (6). During this traver-
sal, run-time branch conditions from if-conditions and loop
bounds are collected and translated to iteration space con-
straints. The computational statements we model are formed
by entire basic blocks. For those basic blocks, all explicit
memory loads and store instructions are modeled as mem-

ory accesses. We introduce additional loads and stores to
model inter-basic-block scalar use-def relations as well as
PHI nodes [5]. We do not model scalar dependences intro-
duced by induction variables, as this information is already
available in the iteration space description.

4.3 Modeling memory accesses

Deriving a precise model of a program’s memory access be-
havior is essential for accelerator mapping. In the following
we discuss multi-dimensionality, multi-element-type arrays,
as well as may-accesses resulting from non-affine control.

Understanding the multi-dimensionality of memory ac-
cesses is important for efficient accelerator mapping. Even
though programmers commonly process multi-dimensional
data, the lack of native support for multi-dimensional ar-
rays of parametric size (C before C99, C++, Rust, ...) of-
ten forces them to use one-dimensional manually linearized
arrays. Surprisingly, even languages that natively provide
complete support for multi-dimensional arrays (Julia, For-
tran) loose part of this information when lowering to LLVM-
IR level. An interesting exception are fixed-sized arrays, for
which size information is often kept at IR level. However,
even in this case we cannot reliably exploit this informa-
tion without proving that all memory accesses remain within
bounds, as out-of-bound accesses are well defined for LLVM-
IR as long as the address accessed falls into an allocated
memory region.

Due to the lack of reliable dimensionality information, the
original version of Polly [25] modeled all memory accesses as
accesses to flat, one-dimensional arrays. As a result, other-
wise easy to analyze accesses to multi-dimensional arrays of
parametric size are only visible as complex polynomial index
expressions (A[i*s+j] instead of A[i] [j]). As such expres-
sions can only be over-approximated with affine sets, com-
putation of precise data dependence information becomes
impossible. In the context of accelerator mapping such ap-
proximation is even more problematic, as lacking informa-
tion about the precise set of data elements accessed pre-
vents the computation of inter-device data-transfers. To en-
sure our compiler can derive efficient memory transfers and
mappings, we recover multi-dimensional arrays of paramet-
ric size using optimistic delinearization [26] as available in
Polly. To support Fortran we additionally added support for
max(p, 0) array size expressions, which are common in gfor-
tran generated code. In case the necessary type information
is available, we can also derive accesses to multi-dimensional
arrays of fixed size and validate them with validity condi-
tions similar to the ones introduced by Polly’s optimistic
delinearization.

Some programs use arrays that contain data elements of
different types or only conditionally access certain memory
locations. Polly originally required all accesses to a given
array to be of the same type. As part of this work, we ex-
tended Polly to also model arrays that contain elements of
different size or alignment by introducing a smaller artificial
element type which evenly divides all alignments and ele-
ment type sizes in the SCoP and by expressing all memory
accesses in function of this smaller type. Another common
code pattern are data-dependent conditions. Polly originally
required all control flow conditions to be statically analyz-
able, but recently gained support for non-affine conditions
by over-approximating write accesses enclosed by such con-
ditions as may-write accesses [38]. Both extensions are im-



portant for the case studies in Section 6.3 and Section 6.4.

4.4 Generate GPU-specific schedule

To generate well optimized GPU code we use the GPU op-
timization infrastructure of ppcg [49, 46] to translate a given
schedule into a GPU-specific schedule tree. As a result of
this translation the computation is partitioned between the
different GPU workgroups/threads and a schedule tree is
generated that models the code a specific thread instance
executes. Besides the computation of this thread, the re-
sulting schedule tree can also contain data transfers to and
from shared/private memory as well as thread synchroniza-
tion primitives.

4.5 Pinned host memory

CUDA distinguishes between normal and “pinned” host
memory. Whereas normal memory must first be transferred
into a page-locked memory buffer before it can be transferred
to the device, already pinned memory can be directly trans-
fered by the DMA engine. For manually written CUDA code
it is common to directly allocate pinned memory. However,
in our case we have no control over the memory allocation,
as users may allocate memory at arbitrary program points.
Hence, we can only pin memory at the beginning of the
SCoP we optimize. If pinning should be used it is neces-
sary to understand for each array the minimal and maximal
address that will be accessed during the execution of the
SCoP. We obtain this information by computing the set of
multi-dimensional memory locations (Section 4.3) accessed
for a given array and by taking the lexicographic minimal
and maximal offset of these accesses. These offsets are then
lowered to single-dimensional offset expressions, in combi-
nation with the array base pointer translated to memory
addresses, and transformed in a tuple of start address and
allocation size. Using this information, Polly-ACC can op-
tionally take advantage of “pinning” at the cost of reducing
swappable memory.

4.6 Cost model for offloading program regions

Even though many program regions could be mapped to
an accelerator, the cost of transferring data and control lim-
its the set of program regions for which this is beneficial. To
ensure only program regions are offloaded that are likely to
benefit, we use a three-layer heuristic.

The first layer verifies — before modeling the SCoP —
that the program region will perform some non-trivial com-
putation. At the moment, we require the region to either
contain at least two loops or a single loop with a mini-
mal number of instructions (currently > 40). As a second
heuristic we use a strategy proposed by ppcg, which — af-
ter modeling and initial scheduling — maps a subtree of
the schedule tree to the accelerator, if at least one band
node can be found with at least one parallel dimension and
for which the dimensions of the band node are permutable
(which means tiling can be applied to map these schedule
dimensions to threads/workgroup). Both heuristics do not
require dynamic checking and consequently do not affect
program run time, if they evaluate to ‘unprofitable’.

Our third and final heuristic ensures that the number of
dynamic computations in the SCoP region is not lower than
a configurable threshold. To verify this condition we over-
approximate the domain of each statement within the SCoP
as a box and derive a (possibly symbolic) expression for the

product of the number of statement executions in the box
and the number of instructions executed in each statement
instance (currently we require at least 10%512%512 dynamic
instructions). In case the loop bounds are known constants,
this expression can be evaluated at compile time. In case
of parametric loop bounds, this expression will be evaluated
dynamically. However, as we already ruled out the simple
cases and as we ensured through over-approximation that
the expression remains simple, the execution time overhead
introduced by these dynamic checks is likely to be negligible.

S. DATA MANAGEMENT RUN-TIME

Multi-device binaries run on compute elements that do
not share a single memory space. To ensure data is always
available when and where needed, it is necessary to intro-
duce explicit memory allocation and data transfer opera-
tions. Doing so carefully is important to ensure fast program
execution.

Within each individual SCoP, we statically generate code
for all data allocations and data transfers. All device mem-
ory is allocated whenever a SCoP is reached during pro-
gram execution and freed right before the SCoP is left.
Data transfer code is emitted under the assumption that
for each individual SCoP all data needs to be transferred
from the host to the accelerator and directly back to the
host. Throughout the execution of the SCoP, data is main-
tained on the accelerator, but may be transfered back to
the CPU in case parts of the SCoP are scheduled to run
on the host system. Within a single SCoP, this is very ef-
ficient. However, when considering the full program, static
data management is often not optimal.

When executing a full application, the interleaved execu-
tion of general-purpose host code and device-mapped SCoPs
results in program behavior that is difficult to analyze stati-
cally. Repeated switches between host and device-code exe-
cution may result in subsequently executed SCoPs that work
on the same data. When only relying on our static data
management strategy, we would repeatedly issue (almost)
identical allocations and data transfers each time a SCoP
is reached. To eliminate these otherwise costly transfers,
we provide a run-time library that caches allocations during
program execution allowing data to remain on the device
even across SCoP boundaries. Redundant host-to-device
data-transfers are skipped in case data is already available
on the device and is known to not have been modified by the
host since being placed on the device. Similarly, device-to-
host data-transfers can be delayed up to the first host-side
data access such that, in the best case, data is transferred
out of device memory only once for a sequence of executed
SCoPs.

Listing 2 shows a 1D heat kernel that illustrates the prob-
lem just described. Each of the functions defined in “File
One” is by itself a SCoP that can be run on the accelerator.
When analysing the dynamic sequence of memory manage-
ment operations for T = 3 as illustrated in Listing 3, we
see that per-SCoP memory management introduces a large
number of redundant data transfers where only a small sub-
set is really necessary. Having a global perspective we see
that only one allocation for A is needed and, due to the in-
creasing size of its allocations, two allocations for B. As A
is fully overwritten, there is no need for any host-to-device
(H2D) data transfers from A. The data transfers for B are
more complicated, as its allocation needs to be expanded



Listing 2 1D heat kernel consisting of multiple functions

Listing 3 Memory transfers of heat1D kernel (Listing 2)

// File One
void initialize(int n, X[n], float val) {
for (int i = 0; i < n; i++)
X[i] = value;
}

void setCenter(int n, X[n], float val,
int offset) {
for (int i = offset; i < n - offset; i++)
X[i] = value;

void average(int n, float In[n], float Out[nl]) {
for (dnt i = 2; i < n - 2; i++)
Out[i] = 0.2f * (In[i-2] + In[i-1] + In[i]
+ In[i+1] + In[i+2]);
}

// File Two
void heatiD(int n, float A[n], float hot,
float cold) {
float *B = malloc(sizeof (float) * n);
B[0] = B[1] = B[n-2] = B[n-1] = 0;
initialize(n, A, cold);
setCenter(n, A, hot, n/4);

for (int t = 0; t < T; t++) {
average(n, A, B);
average(n, B, A);
printf("Iteration Jd finished\n", t);
}
}

on the GPU. Before the first allocation of B is deleted, the
subset of B stored on the device needs to be saved with a
device-to-host (D2H) data transfer. Then, after having al-
located more memory for B, the full B array is loaded back
to the device. From this point we are in a steady state and
no further data transfers are needed for later iterations of
the time loop. Only at some point back in the host code,
e.g., when A is printed, data needs to be moved back from
device to host memory. It is interesting to note that calls
such as the printf() call in the compute loop should not
trigger any additional data transfers as long as they do not
access memory placed on the device.

Using our run-time library we cache allocations. To do
so we pass with each device memory request (larger than
4K) the host memory range it corresponds to. We then
distinguish four cases: 1) a strictly larger allocation exists, 2)
a strictly smaller allocation exists, 3) a partially overlapping
allocation exists, and 4) no allocation for this memory range
exists. For case 1) we reuse the existing allocation, in case
2) and 3) the old allocation is freed and a new one is created
and for case 4) just a new allocation is created. In case
of insufficient device memory, cached allocations from older
SCoPs are freed.

Unnecessary data-transfers are avoided by keeping track
of which device memory regions are up-to-date, by carefully
observing host memory activities, and by executing device-
to-host transfers lazily. Each time a host-to-device transfer
is executed we register in the corresponding allocation the
region of memory that has been updated and then immedi-
ately protect the host memory region just copied using the
mprotect system call. In case a later host-to-device data-
transfer corresponds to the same memory region we skip this
transfer. This is safe for two reasons: First, our kernels do
not perform device-memory-writes without a corresponding
host-memory write. This means the device memory always

SCoP-Local

// initialize

A0 = devAlloc(&A, n)
D2H(&A, &AO, n);
free(AOQ);

// setCenter

Al = devAlloc(&A, n/2)
D2H(&A+n/4, &A1, n/2);
free(Al);

// average

A2 = devAlloc(&A, n);
BO = devAlloc(&B+2, n-4); BO = devAlloc(&B+2, n-4);
H2D(&A, &A2, n);
D2H(&B+2, &BO, n-4);

Global (library managed)
// initialize
A0 = devAlloc(&A, n)

// setCenter

// average

free(A2);
free(BO);
// average // average
D2H(&B+2, &BO, n-4);
free(BO);
Bl = devAlloc(&B, n); Bl = devAlloc(&B, n);
A3 = devAlloc(&A+2, n-4);

H2D(&B, &B1, n);
D2H(&A+2, &A3, n-4);
free(Bl);

free(A3);

// average

A4 = devAlloc(&A, n);
B2 = devAlloc(&B+2, n-4);
H2D (%A, &A4, n);
D2H(&B+2, &B2, n-4);
free(A4d);

free(B2);

H2D (4B, &B1, n);

// average

// A[?] host access
D2H(&A, &A4, n);

corresponds to the host memory, as long as no host code has
modified the host memory region. Second, in case the host
memory was unexpectedly accessed, we catch the resulting
SIGSEGYV exception and invalidate all existing cache infor-
mation. This ensures later host-to-device accesses are not
skipped.

Device-to-host memory transfers are performed lazily and
only triggered in case the host code actually accesses the cor-
responding host memory. Whenever a device-to-host mem-
ory transfer request is registered in our library the corre-
sponding memory region is again protected with mprotect
and the data-transfer request is registered (but not yet per-
formed). In case subsequent data-transfers to related mem-
ory regions are requested, the existing transfer requests are
expanded. Only in case a host-memory access is indicated
by a SIGSEGV exception or the corresponding device allo-
cation is evicted, the actual data transfers are issued.

Certain properties are important for this system to be
effective: Because handling of page faults is not expensive
if it occurs rarely, but has a high-cost if it occurs on each
memory access, we only cache transfers and allocations that
are sufficiently large (> 4KB - the size of a standard page).
Furthermore, unrelated segmentation faults may occur in
case unrelated data is present on the pages that belong to the
memory range we protected. Depending on the malloc(3)
implementation used, this can be an issue. We observed that
the implementation of libc in Linux can place large and small
allocations on identical pages. In contrast, jemalloc [22], a
memory allocator with focus on “fragmentation avoidence
and scalable concurrency” used for example in FreeBSD and
Firefox, stores allocations larger than the minimal page size



(a) Mobile system

CPU i7-4710MQ || GPU GT730M
Architecture Haswell || Architecture Kepler
Cores 4 || Shader blocks 2
Frequency 2.5 GHz || Cores / block 192
Cores (total) 384
Performance Performance
- float 320 Gflop/s - float 552 Gflop/s
- double 160 Gflop/s - double 24 Gflop/s
(b) Workstation system
CPU E5-2690 || GPU Titan Black
Architecture | SandyBridge || Architecture Kepler
Cores 10 || Shader blocks 15
Frequency 3.0 GHz || Cores / block 192
Cores (total) 2,880
Performance Performance
- float 480 Gflop/s - float 5,121 Gflop/s
- double 240 Gflop/s - double 1,707 Gflop/s

Table 1: Hardware specifications used in evaluation

always separately from smaller objects. As a result, memory
that is larger than one page size is guaranteed to not share
memory pages with any other allocation.

6. EVALUATION

We evaluate our work on the LLVM nightly test suite
(over 50 benchmark suites and full programs), the 30 Poly-
bench 3.2 applications, and SPEC CPU 2006. As hardware
we use a workstation with a 10-core Intel Xeon CPU and an
NVIDIA Kepler GPU (Table 1b) running Ubuntu 14.04.3
LTS with Linux 3.19.0-43-generic, CUDA tools V7.0.27 and
CUDA module 352.68. For our case studies we provide addi-
tional performance data on a mobile system with an Intel 4
core i7-4710MQ Haswell CPU and a NVIDIA GT730M mo-
bile GPU (Table 1a) using Ubuntu 15.10 with Linux 4.2.0-
30, CUDA tools V7.5.17 and CUDA module 352.63.

6.1 LLVM nightly test suite (LNT)

As first part of our evaluation we analyze the impact of
Polly-ACC on a diverse set of applications. The principle
objective here is not to impress with speedups. Instead, we
want to demonstrate the functionality of our heterogeneous
compute optimizer and understand: 1) how many SCoPs
can theoretically be mapped to an accelerator and 2) how
often do unprofitable mapping choices result in performance
regressions.

For our analysis we choose the LLVM nightly test suite
(LNT), a large collection of open source applications and
benchmark suites used in the LLVM community. It con-
sists of 1,955 files of C code (1,196,209 lines) as well as 648
files of C++ code (251,459 lines). It contains 43 bench-
mark suites including Dhrystone, Linpack, CoyoteBench,
aand SciMark2, 25 full applications including ClamAV, lua,
and sqlite as well as various individual tests. LNT also pro-
vides support for running the C/C++ benchmarks of SPEC
CPU 2006. Overall, this results in 515 individual executa-
bles.

We compile the LNT with Polly-ACC and collect statistics
(Table 2) on the number of device-mapped SCoPs. With-
out any heuristics Polly-ACC detects 2,202 device-mappable
SCoPs and introduces 2,991 kernels. However, many ker-

No Heuristics

‘With Heuristics

SCoPs 2,202 159
Kernels (0-dim grid) 541 86
Kernels (1-dim grid) 2,167 187
Kernels (2-dim grid) 264 48
Kernels (3-dim grid) 19 2

Table 2: SCoPs and Kernels in LLVM LNT

nels only perform little computation? and can consequently
not be mapped profitably to the accelerator. When en-
abling compile-time profitability heuristics (Section 4.6), 159
SCoPs are mapped and 323 kernels are introduced.

We also analyze the execution time impact of Polly-ACC
in comparison to plain clang+LLVM 3.8 pre (r252936). Run-
ning 5 iterations of the benchmark suite with both compil-
ers we see 13 benchmarks that show more than 40% reduc-
tion in execution time of which nine show more than 90%
reduction. Besides Polybench (Section 6.2) and lbm (Sec-
tion 6.3), larger speedups are also visible on Shootout/ary3
and Misc/dt. Introducing GPU parallelism results in 4 slow-
downs of 2-8% and only one larger regression from 0.33 to 8.0
seconds for the parametric version of Polybench’s dynprog.
Overall, we see clear speedups with almost zero negative
impact.

6.2 Polybench C - 3.2

As first performance benchmark we analyze in detail the
Polybench C 3.2 kernels [40], which have already shown run-
time benefits in the context of the LLVM test suite (Sec-
tion 6.1). We compare against icc 15.0.0 20140723, a de-
velopment version of clang/LLVM 3.8 (r252936), as well as
clang in combination with the Polly sequential data-locality
optimizations. To obtain fast multi-threaded code we use icc
thread-level auto-parallelization (-parallel). All codes are
compiled with -03 -march=native, single precision floating
point operations, and use fixed power-of-two problem sizes
scaled to around one second of execution time when com-
piled with Polly-ACC. All execution times are end-to-end
times that include data transfers as well as the time CUDA
needs to load the kernel and compile it to device code. We
run five samples per test case and report the median.

Our results are illustrated in Figure 3 using icc generated
sequential code as baseline. Performance numbers for clang
without Polly are not illustrated as they are strictly slower
than clang in combination with Polly. We first look briefly
at the sequential execution times. In 18 cases icc is faster
than clang+Polly whereas in 8 cases clang+Polly produces
faster code. The most interesting cases are correlation, co-
variance and mvt where clang+Polly generated sequential
code is more than 3x faster than icc. The poor performance
of icc is likely caused by an inefficient loop structure in co-
variance and correlation which the icc loop optimizer does
not optimize well.

We now analyze the performance gains obtained through
parallel execution. The icc thread-parallel code shows up to
10x speedup (on a 10 core system) for codes like 2mm, 3mm,
correlation, covariance, syr2k and syrk. Polly-ACC outper-
forms the icc-generated thread-parallel code for 11 out of 30
benchmarks, even though the sequential code generated by
clang is in many cases slower than icc generated code. In

4average execution is less than 2 seconds
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Figure 3: Speedup over icc -03 on

certain cases, e.g., correlation/covariance, performance has
increased by more than 100x (a part of this speedup is due
to the slow sequential baseline). In case efficient thread par-
allel code is generated (the perfect case for icc seem to be
gemm-like computations) the difference between GPU and
host code is generally smaller. Interesting to note are also
the stencil computations jacobi-1d, jacobi-2d, fdtd-2d (but
not adi) for which multi-threaded execution seems to be less
beneficial, but GPU acceleration indeed is. Finally, it is
interesting to note that, when comparing clang+Polly and
Polly-ACC, accelerator usage never results in larger perfor-
mance regressions. Over all benchmarks thread parallel ex-
ecution results in 2.1x improvement compared to 3.7x using
Polly-ACC (geom. mean). Hence, we can conclude that for
a wide range of compute kernels automatic accelerator map-
ping can results in performance improvements even beyond
what can be obtained with thread-parallel execution.

6.3 Lattice Boltzmann - SPEC CPU 2006

In the following, we present a case study of 470.1lbm. This

SPEC benchmark implements the “Lattice Boltzmann Method”

(LBM) to compute the behavior of incompressible fluids in
three-dimensional space, an important simulation in the field
of material science [29]. Its core computation is a time it-
erated loop (Listing 4) that applies at each timestep two
compute functions on a data grid, swaps the grid point-
ers, and prints grid statistics at every 64th iteration. The
two compute functions consist of together 270 lines of code,
which scan the data grid multiple times to update the indi-
vidual grid points. The loop structure itself is rather sim-
ple, but the computation performed is non-trivial. First, the
working-data is stored in multi-element-type arrays, which
contain data elements of different size. Second, the control
flow in the loop body is data-dependent, such that it is nec-
essary to introduce a statement region that encapsulates the
data-dependent control flow and is scheduled jointly. Mod-
eling such properties requires extensions discussed in Sec-
tion 4.3. Furthermore, 470.lbm has for two reasons a very
irregular memory access pattern: First, the neighbors of a
point in a three-dimensional grid are far apart in memory if
laid out sequentially. Second, 470.1bm stores all data points
of a cell next to each other (array-of-structs), such that sub-
sequent iterations of the data loop do not access neighboring
addresses.

GPU execution of 470.1bm is interesting for two reasons:

[ icc.parallel = polly I polly-gpu

g £t

polybench 3.2 kernels (single)
Mobile ‘Workstation

Time [m] Speedup | Time [m] Speedup
icc 5:19 3:54
icc -openmp | 7:05 -25% | 1:41 +130%
clang 5:33 -5% | 3:35 +8%
polly GPU | 4:17 +24% | 0:55 +325%

Table 3: 470.lbm run-time performance

First, the larger memory bandwidth commonly available
on GPUs allows for fast memory accesses despite the ir-
regular access pattern. Second, the use of predicated in-
structions in the GPU program simplifies vectorization of
data-dependent control flow. However, just by itself each
kernel cannot be profitably optimized due to the cost of
transferring data between host and accelerator. By using
link-time optimization in combination with heavy inlining
it may be possible to obtain a single very large SCoP that
could be mapped to the device, but both difficult to model
pointer swapping in LBM_swapGrids as well as IO code in
LBM_showGridStatistics make this difficult.

Listing 4 470.lbm - Core computational loop
for(t = 1; t <= param.nTimeSteps; t++) {
if (param.simType == CHANNEL)
handleInOutFlow (*srcGrid) ;

performStreamCollide (*srcGrid, *dstGrid);
swapGrids (&srcGrid, &dstGrid);

if ((t & 63) == 0)
showGridStatistics (*srcGrid);

The key to avoid data-transfer overhead while keeping
the GPU mapping strategy local is the lazy data transfer
management discussed in Section 5. The only functions
that can possibly access kernel data are handleInOutFlow,
performStreamCollide, and showGridStatistics. The first
two are fully mapped to the GPU whereas the last one is
only rarely executed. Hence, data transfers are rarely re-
quired and keeping data on the accelerator optimistically is
likely to be profitable.

We report performance results (Table 3) for two systems,
a standard workstation system as well as a second mobile
system, each time using using the SPEC reference data size.



Kernel 1 Kernel 2
Block sizes (8, 32) (8, 32)
PTX size [Bytes/Lines] 9k/216 9k/209
Registers/Thread 40 40

Kernel 3 Kernel 4
Block sizes (8, 32) (8, 32)
PTX Size [Bytes/Lines] 48k/1257  10k/227
Registers/Thread 255 42

Table 4: Cactus ADM statistics

We compare against icc as well as clang and, as Ibm comes
with OpenMP annotations, also provide OpenMP paral-
lelized numbers for icc. Both icc and clang reach comparable
performance during single thread execution. The benefit of
thread level parallelism with OpenMP (using the available
OpenMP annotations) is less clear. On the mobile system,
additional thread level parallelism causes a 25% reduction
in overall performance most likely due to cache trashing by
competing threads. On the workstation system we see a
speedup of 130%, which suggest that the memory system of
this platform requires more than one thread to be fully satu-
rated. On both systems, our automatic GPU parallelization
is clearly beneficial. On the mobile system we see only 24%
performance improvement and on the workstation we see
with 325% more than 3x performance improvement over se-
quential execution and 195 additional percent points over
the thread-parallel code. We also looked into the benefits
of our memory transfer management system. It reduces the
original 6,000 host-to-device transfers and 3,000 device-to-
host transfers to only 190 and 142 transfers.

6.4 Cactus ADM - SPEC CPU 2006

Cactus ADM, an application that solves the Einstein evo-
lution equations, is our second full-program case study. It
consists of two components, the Cactus problem solving en-
vironment [4] as well as benchADM, a kernel representative
for many applications in numerical relativity. Together they
solve ten coupled non-linear partial differential equations us-
ing a staggered-leapfrog method. Especially interesting is
that Cactus schedules computations using launch-time pa-
rameters to control both the precise computation as well as
frequency and content of status reports. As a result, deriv-
ing statically a minimal set of data-transfers is impossible
even assuming full program knowledge.

The implementation consists of 265 C files (87,060 source
lines) for the problem solving environment as well as 5 For-
tran files (2,689 source lines) for the computational kernel.
The majority of the computation takes place in a single For-
tran method. It consists of over 800 lines of comment-free
Fortran code, has 9 loops nested to a depth of three, and
contains 194 program statements in the body of the largest
loop. The full method contains almost 300 array references
and slightly more than 350 compute operator calls.

Polly-ACC detects the entire compute function as a single
SCoP and maps it automatically to the accelerator. The first
challenge to statically reason about this SCoP are the mem-
ory accesses, which need to be delinearized (Section 4.3).
Delinearization is here additionally complicated by the use
of modulo operations in the array index expressions. The
second challenge is the size of the code. With only minimal
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Figure 4: Cactus ADM performance

preprocessing the SCoP that is extracted contains 38 three
dimensional arrays, 4 statements, 232 read accesses, 45 write
accesses, and uses 79 parameter dimensions. As many oper-
ations on integer sets are (double) exponential in the number
of dimensions, generating code for the resulting SCoP takes
a long time® (we aborted after an hour). It might be possi-
ble to tune isl for such complex inputs, but in the optimal
case we can avoid to reason about so complex spaces. The
majority of the parameters have been introduced to model
run-time bounds checks. Most of them can be eliminated
by enabling global value numbering in the canonicalization
phase (Section 4.1). This does not only reduce the number
of read accesses to 186, but - more importantly - only leaves
9 parameter dimensions. As a result, Polly-ACC processes
the SCoP in less than 30 sec. and generates four different
kernels (Table 4). Three with around 200 PTX instructions,
while the largest has over 1,200 PTX instructions and uses
255 registers per thread.

We compare Polly-ACC (with/without caching) to icc, icc
with automatic parallelization (-parallel), and LLVM (us-
ing clang and dragonegg as frontends) considering 10 differ-
ent report output intervals. We run each configuration 10
times and report the median. The violin plots indicating the
distribution of the test result of each configuration remain
almost invisible for most experiments and show only a small
variation for the cached execution of Polly-ACC. Looking
at the performance values, we see for both platforms that
neither icc nor LLVM performance is affected by a change
of the reporting output interval and that icc reaches about
twice the performance of LLVM, which can be accounted to
better SIMDization. When compiling with icc -parallel,
we see benefits from multi-threading which result in 3.4x
(mobile) and 6.2x speedup (workstation) over the best se-
quential code. Thread parallel code shows a slight, but vis-
ible, performance degradation in case of frequently emitted
reports. On the workstation system Polly-ACC without any
caching is able to show speedups over sequential icc, despite
costly host-device data-transfers at each individual iteration.

%isl and Polly provide a compute-out facility to handle these
cases gracefully
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Figure 5: Cactus ADM data transfer cost

When eliminating this overhead using automatic allocation
and data transfer caching as described in Section 5 per-
formance increases notably. Even with frequent reporting,
Polly-ACC slightly outperforms icc -parallel. When report-
ing every 10th iteration, as done with the SPEC reference
run parameters, a speedup of 2.1x over thread parallel code
can be achieved. This speedup grows to 2.3x when reducing
reporting. On the mobile system, Polly-ACC with caching
enabled shows 1.9 speedup over sequential code, but only
reaches half the performance of thread parallel code due to
the low double precision performance of the GPU (Table 1a).

The remaining SPEC CPU applications.

The remaining applications do not show any performance
changes, but at least two additional benchmarks, GemsFDTD
and bwaves, have hot functions that could benefit from au-
tomatic GPU mapping. However, bwaves uses parametric
modulos (exp % N) which require some special handling to
work in the context of Presburger formulas and gemsFDTD
uses difficult array index expressions for which a delineariza-
tion approach has been presented, but which has not yet
been implemented [26].

6.5 Compilation time

Fast compile times are important. Hence, we compare
clang and Polly-ACC (compiled in Release+Asserts mode).
The full compilation of all 30 polybench kernels takes 22 sec-
onds with clang -03 and 38 seconds (~ 1.3 seconds / bench-
mark) with Polly-ACC for the complete flow from parsing
over CPU/GPU code generation to linking. This corre-
sponds to about 70% compile time increase. Compiling the
full LNT test suite took 27 minutes with clang and required
30 minutes using Polly-ACC, only a 10% increase.

7. RELATED WORK

The steadily growing use of GPU accelerators has moti-
vated the development of a wide set of programming models
for heterogeneous compute devices. The most direct ap-
proaches are CUDA [39] and OpenCL [44], which — at the
cost of program complexity — give precise control over the
accelerator. Higher-level C++ libraries such as Thrust [13],

C++ AMP [24], Bolt [1] as well as Boost.Compute [2] raise
the level of abstraction by providing a C4++-STL style pro-
gramming interface, but still require explicit GPU program-
ming. Directive based languages such as OpenMP for accel-
erator [14], OpenMPC [33], OpenARC [34], OpenACC [50],
HMPP [21], and OpenMP [15] use sequential loops com-
plemented with pragma directives to describe mapping and
memory management strategies. Shared memory usage is
controlled in OpenACC by developer-provided “cache” anno-
tations. Polly fills an important gap by enabling accelerator
mapping without the need for any kind of annotation.

There have been a range of projects for automatically de-
riving GPU code at the source level. Par4All [7] uses a non-
polyhedral approach based on abstract interpretation which
enables powerful inter-procedural analyses. Polyhedral com-
pilation techniques have first been used for GPU code gener-
ation by Baskaran [11] and have later been improved as part
of the R-Stream compiler [35]. An alternative mapping ap-
proach that relies on the counting of integer points to tightly
fill shared memory caches has been proposed by Baghdadi
et. al. [10], but the resulting memory accesses have been
shown to be too costly in practice. With CUDA-Chill [42]
generating GPU codes based on user provided scripts has
been proposed. The state-of-the-art in polyhedral source-
to-source compilation is ppcg [49, 46], which provides effec-
tive GPU mappings that exploit shared and private memory.
The main focus of these tools is the generation of GPU ker-
nel code for often carefully preprocessed code [9]. In the
context of PPCG, a PENCIL runtime-library (PRL) is be-
ing developed (not published) that allows for kernel code
caching, but does not provide memory transfer optimiza-
tions. Polly-ACC is the first solution that brings advanced
GPU mapping techniques to a large set of programs by not
enforcing specific coding styles and by automatically choos-
ing when to perform GPU mapping. Finally, the Polly-ACC
run-time library clearly pushes the optimization of GPU ker-
nels beyond single-kernel optimization.

Offloading from within a compiler has been first proposed
by GRAPHITE-OpenCL [31] which allowed for the static
mapping of parallel loops, but did not considering inter
SCoP data reuse. In the context of Polly, Kernelgen [37]
proposed a new approach in which it aims to push as much
execution as possible on the GPU, using the CPU only for
system calls and other program parts not suitable for the
GPU. The final executables are shipped with a sophisti-
cated run-time system that supports just-in-time accelera-
tor mapping, parameter specialization and provides a page-
locking based run-time system to move data between de-
vices. Damschen et. al. [20] introduce a client-server system
to automatically offload compute kernels to a Xeon-Phi sys-
tem. These approaches are based an early version of Polly
(or GRAPHITE), without support for non-affine subregions,
modulo expressions, schedule trees or delinearization and
are consequently limited in the kind of SCoPs they can de-
tect. Finally, with Hexe [36] a modular data management
and kernel offloading system was proposed which does to
our understanding not take advantage of polyhedral device
mapping strategies. All previous techniques do not use poly-
hedral modeling to automatically exploit software managed
caches and do neither show regression free execution on a
large set of benchmarks nor improvements on well-known
SPEC kernels.



8. CONCLUSION

We presented with Polly-ACC a new heterogeneous com-
pute compiler for the translation of sequential programs to
multi-device executables that transparently take advantage
of heterogeneous hardware. Working on a low-level inter-
mediate IR and recovering all necessary information at this
level, we showed that even advanced device mapped strate-
gies can be applied — language independent — from within
a static compiler. Using a carefully chosen, conservative
device mapping strategy we were not only able to compile
a wide range of general-purpose codes introducing almost
no performance regressions, but also showed notable per-
formance improvements for a range of kernels. These im-
provements show clearly that automatic accelerator map-
ping techniques allow certain codes to be accelerated with-
out initial cost and hopefully free developer time to work on
algorithmic changes or codes not yet amenable to automatic
accelerator mapping.
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